
G Campbell Teskey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6445010/publications.pdf

Version: 2024-02-01

C. CAMDRELL TESKEY

#	Article	IF	CITATIONS
1	OUP accepted manuscript. Cerebral Cortex, 2022, , .	2.9	6
2	New neurons in old brains: implications of age in the analysis of neurogenesis in post-mortem tissue. Molecular Brain, 2022, 15, 38.	2.6	9
3	Endocannabinoid-serotonin systems interaction in health and disease. Progress in Brain Research, 2021, 259, 83-134.	1.4	14
4	Development and plasticity of complex movement representations. Journal of Neurophysiology, 2021, 125, 628-637.	1.8	15
5	The ketogenic diet raises brain oxygen levels, attenuates postictal hypoxia, and protects against learning impairments. Neurobiology of Disease, 2021, 154, 105335.	4.4	7
6	InÂvivo endocannabinoid dynamics at the timescale of physiological and pathological neural activity. Neuron, 2021, 109, 2398-2403.e4.	8.1	38
7	Behavioral Deficits in Mice with Postnatal Disruption of <i>Ndel1</i> in Forebrain Excitatory Neurons: Implications for Epilepsy and Neuropsychiatric Disorders. Cerebral Cortex Communications, 2021, 2, tgaa096.	1.6	6
8	Neurovascular Coupling in Seizures. Neuroglia (Basel, Switzerland), 2021, 2, 36-47.	0.9	2
9	Postnatal Role of the Cytoskeleton in Adult Epileptogenesis. Cerebral Cortex Communications, 2020, 1, tgaa024.	1.6	4
10	Postictal brainstem hypoperfusion and risk factors for sudden unexpected death in epilepsy. Neurology, 2020, 95, e1694-e1705.	1.1	20
11	Quantitative T2 MRI is predictive of neurodegeneration following organophosphate exposure in a rat model. Scientific Reports, 2020, 10, 13007.	3.3	1
12	In vivo assessment of mechanisms underlying the neurovascular basis of postictal amnesia. Scientific Reports, 2020, 10, 14992.	3.3	16
13	Dynamic oxygen changes during status epilepticus and subsequent endogenous kindling. Epilepsia, 2020, 61, 1515-1527.	5.1	9
14	Anandamide Signaling Augmentation Rescues Amygdala Synaptic Function and Comorbid Emotional Alterations in a Model of Epilepsy. Journal of Neuroscience, 2020, 40, 6068-6081.	3.6	19
15	Stress-induced modulation of endocannabinoid signaling leads to delayed strengthening of synaptic connectivity in the amygdala. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 650-655.	7.1	50
16	Reelin Improves Cognition and Extends the Lifespan of Mutant Ndel1 Mice with Postnatal CA1 Hippocampus Deterioration. Cerebral Cortex, 2020, 30, 4964-4978.	2.9	6
17	Seizures Alter Cortical Representations for Complex Movements. Neuroscience, 2020, 449, 134-146.	2.3	4
18	Seizures elevate gliovascular unit Ca2+ and cause sustained vasoconstriction. JCI Insight, 2020, 5, .	5.0	21

#	Article	IF	CITATIONS
19	Caffeine Exacerbates Postictal Hypoxia. Neuroscience, 2019, 422, 32-43.	2.3	6
20	Signs and symptoms of the postictal period in epilepsy: A systematic review and meta-analysis. Epilepsy and Behavior, 2019, 94, 243-251.	1.7	27
21	Fast oxygen dynamics as a potential biomarker for epilepsy. Scientific Reports, 2018, 8, 17935.	3.3	16
22	Assessment of brain oxygenation imbalance following soman exposure in rats. NeuroToxicology, 2018, 65, 28-37.	3.0	13
23	Motivational wheel running reverses cueing behavioural inflexibility in rodents. Journal of Neural Transmission, 2017, 124, 1635-1640.	2.8	2
24	Neurodegeneration and Pathology in Epilepsy: Clinical and Basic Perspectives. Advances in Neurobiology, 2017, 15, 317-334.	1.8	57
25	Postictal hypoperfusion/hypoxia provides the foundation for a unified theory of seizureâ€induced brain abnormalities and behavioral dysfunction. Epilepsia, 2017, 58, 1493-1501.	5.1	72
26	Loss of HCN channel mediated lh current following seizures accounts for movement dysfunction. Channels, 2017, 11, 176-177.	2.8	3
27	HCN channels segregate stimulationâ€evoked movement responses in neocortex and allow for coordinated forelimb movements in rodents. Journal of Physiology, 2017, 595, 247-263.	2.9	16
28	Ndel1 and Reelin Maintain Postnatal CA1 Hippocampus Integrity. Journal of Neuroscience, 2016, 36, 6538-6552.	3.6	18
29	Development and testing of a new system for assessing wheel-running behaviour in rodents. BMC Research Notes, 2016, 9, 262.	1.4	5
30	Ketogenic diet restores aberrant cortical motor maps and excitation-to-inhibition imbalance in the BTBR mouse model of autism spectrum disorder. Behavioural Brain Research, 2016, 304, 67-70.	2.2	29
31	Delta-9-tetrahydrocannabinol (THC) affects forelimb motor map expression but has little effect on skilled and unskilled behavior. Neuroscience, 2016, 319, 134-145.	2.3	2
32	Postictal behavioural impairments are due to a severe prolonged hypoperfusion/hypoxia event that is COX-2 dependent. ELife, 2016, 5, .	6.0	96
33	Intracortical Microstimulation (ICMS) Activates Motor Cortex Layer 5 Pyramidal Neurons Mainly Transsynaptically. Brain Stimulation, 2015, 8, 742-750.	1.6	36
34	Motor Cortex Is Functionally Organized as a Set of Spatially Distinct Representations for Complex Movements. Journal of Neuroscience, 2014, 34, 13574-13585.	3.6	100
35	Serotonin 1A Receptors Alter Expression of Movement Representations. Journal of Neuroscience, 2013, 33, 4988-4999.	3.6	17
36	High frequency stimulation alters motor maps, impairs skilled reaching performance and is accompanied by an upregulation of specific GABA, glutamate and NMDA receptor subunits. Neuroscience, 2012, 215, 98-113.	2.3	19

#	Article	IF	CITATIONS
37	Development of motor maps in rats and their modulation by experience. Journal of Neurophysiology, 2012, 108, 1309-1317.	1.8	47
38	Age, experience, injury, and the changing brain. Developmental Psychobiology, 2012, 54, 311-325.	1.6	73
39	A prolonged experimental febrile seizure results in motor map reorganization in adulthood. Neurobiology of Disease, 2012, 45, 692-700.	4.4	23
40	Functional MRI response and correlated electrophysiological changes during posterior hypothalamic nucleus deep brain stimulation. NeuroImage, 2011, 56, 35-44.	4.2	21
41	Functional Organization of Rat and Mouse Motor Cortex. Neuromethods, 2011, , 117-137.	0.3	2
42	Larger cortical motor maps after seizures. European Journal of Neuroscience, 2011, 34, 615-621.	2.6	11
43	Persistent enhancement of functional MRI responsiveness to sensory stimulation following repeated seizures. Epilepsia, 2011, 52, 2285-2292.	5.1	6
44	High frequency stimulation of the subthalamic nucleus acutely rescues motor deficits and neocortical movement representations following 6-hydroxydopamine administration in rats. Experimental Neurology, 2011, 231, 82-90.	4.1	18
45	Optimal parameters for microstimulation derived forelimb movement thresholds and motor maps in rats and mice. Journal of Neuroscience Methods, 2011, 196, 60-69.	2.5	59
46	Knowing Beans: Human Mirror Mechanisms Revealed Through Motor Adaptation. Frontiers in Human Neuroscience, 2010, 4, 204.	2.0	61
47	Special issue on behavioural and neural plasticity. Behavioural Brain Research, 2010, 214, 1-2.	2.2	0
48	Seizures, but not lowered seizure thresholds, results in larger neocortical motor maps and concomitant disruptions in skilled motor behaviour. Behavioural Brain Research, 2010, 214, 60-65.	2.2	11
49	Functional brain mapping at 9.4T using a new MRIâ€compatible electrode chronically implanted in rats. Magnetic Resonance in Medicine, 2009, 61, 222-228.	3.0	32
50	Motor map expansion in the pilocarpine model of temporal lobe epilepsy is dependent on seizure severity and rat strain. Experimental Neurology, 2009, 217, 421-428.	4.1	17
51	Cortical kindling induces elevated levels of AMPA and GABA receptor subunit mRNA within the amygdala/piriform region and is associated with behavioral changes in the rat. Epilepsy and Behavior, 2009, 16, 404-410.	1.7	5
52	Neocortical movement representations are reduced and reorganized following bilateral intrastriatal 6-hydroxydopamine infusion and dopamine type-2 receptor antagonism. Experimental Neurology, 2009, 220, 162-170.	4.1	23
53	Mechanisms underlying behavioural comorbidities associated with kindling. Canadian Journal of Neurological Sciences, 2009, 36 Suppl 2, S39-40.	0.5	0
54	Repeated seizures lead to altered skilled behaviour and are associated with more highly efficacious excitatory synapses. European Journal of Neuroscience, 2008, 27, 2165-2176.	2.6	23

#	Article	IF	CITATIONS
55	Motor maps, seizures, and behaviour Canadian Journal of Experimental Psychology, 2008, 62, 132-139.	0.8	13
56	Conventional anticonvulsant drugs in the guinea-pig kindling model of partial seizures: effects of repeated administration. Experimental Brain Research, 2007, 178, 115-125.	1.5	4
57	Exogenous antenatal glucocorticoid treatment reduces susceptibility for hippocampal kindled and maximal electroconvulsive seizures in infant rats. Experimental Neurology, 2006, 198, 303-312.	4.1	17
58	Neocortical kindling is associated with opposing alterations in dendritic morphology in neocortical layer V and striatum from neocortical layer III. Synapse, 2006, 59, 1-9.	1.2	28
59	Hippocampal Kindling Leads to Motor Map Expansion. Epilepsia, 2006, 47, 1383-1391.	5.1	34
60	Induction of Neocortical Long-Term Depression Results in Smaller Movement Representations, Fewer Excitatory Perforated Synapses, and More Inhibitory Synapses. Cerebral Cortex, 2006, 17, 434-442.	2.9	38
61	From Ultrastructure to Networks: Kindling-induced changes in neocortex. , 2005, , 125-135.		2
62	Febrile Convulsions Induced by the Combination of Lipopolysaccharide and Low-dose Kainic Acid Enhance Seizure Susceptibility, Not Epileptogenesis, in Rats. Epilepsia, 2005, 46, 1898-1905.	5.1	60
63	Kindling Limits the Interictal Neuronal Temporal Response Properties in Cat Primary Auditory Cortex. Epilepsia, 2005, 46, 171-178.	5.1	12
64	Sensory stimulation reduces seizure severity but not afterdischarge duration of partial seizures kindled in the hippocampus at threshold intensities. Neuroscience Letters, 2005, 388, 33-38.	2.1	17
65	Long-term Potentiation Induces Expanded Movement Representations and Dendritic Hypertrophy in Layer V of Rat Sensorimotor Neocortex. Cerebral Cortex, 2004, 14, 586-593.	2.9	111
66	Kindling Changes Burst Firing, Neural Synchrony and Tonotopic Organization of Cat Primary Auditory Cortex. Cerebral Cortex, 2004, 14, 827-839.	2.9	28
67	Differential neuroplastic changes in neocortical movement representations and dendritic morphology in epilepsyâ€prone and epilepsyâ€resistant rat strains following highâ€frequency stimulation. European Journal of Neuroscience, 2004, 19, 2319-2328.	2.6	20
68	Induction of long-term depression is associated with decreased dendritic length and spine density in layers III and V of sensorimotor neocortex. Synapse, 2004, 53, 114-121.	1.2	56
69	MAOA knockout mice are more susceptible to seizures but show reduced epileptogenesis. Epilepsy Research, 2004, 59, 25-34.	1.6	14
70	Cortical stimulation improves skilled forelimb use following a focal ischemic infarct in the rat. Neurological Research, 2003, 25, 794-800.	1.3	153
71	Motor Map Expansion Following Repeated Cortical and Limbic Seizures Is Related to Synaptic Potentiation. Cerebral Cortex, 2002, 12, 98-105.	2.9	95
72	Enhanced epileptogenesis in S100B knockout mice. Molecular Brain Research, 2002, 106, 22-29.	2.3	49

#	Article	IF	CITATIONS
73	Conventional anticonvulsant drugs in the guinea pig kindling model of partial seizures: effects of acute phenobarbital, valproate, and ethosuximide. Experimental Brain Research, 2002, 146, 336-344.	1.5	7
74	Cortical layer III pyramidal dendritic morphology normalizes within 3 weeks after kindling and is dissociated from kindling-induced potentiation. Brain Research, 2001, 911, 125-133.	2.2	18
75	Mossy fiber sprouting is dissociated from kindling of generalized seizures in the guinea-pig. NeuroReport, 2000, 11, 2897-2901.	1.2	18
76	Alternate-site kindling in the guinea-pig results in accelerated seizure progression and generalization. Epilepsy Research, 1999, 34, 151-159.	1.6	12
77	Effect of Complete and Partial Bilateral Lesions of the Deep Cerebellar Nuclei on Amygdaloid Kindling in Rats. Epilepsia, 1998, 39, 692-699.	5.1	8
78	Post-activation potentiation in the neocortex of awake freely moving rats. Neuroscience and Biobehavioral Reviews, 1998, 22, 195-207.	6.1	25
79	Persistence of kindling: Effect of partial kindling, retention interval, kindling site, and stimulation parameters. Epilepsy Research, 1995, 21, 171-182.	1.6	51
80	Evolution of afterdischarge and seizure characteristics during electrical kindling of the guinea-pig. Brain Research, 1995, 672, 137-147.	2.2	14
81	Post-activation potentiation in the neocortex. III. Kindling-induced potentiation in the chronic preparation. Brain Research, 1995, 702, 77-86.	2.2	35
82	Post-activation potentiation in the neocortex. IV. Multiple sessions required for induction of long-term potentiation in the chronic preparation. Brain Research, 1995, 702, 87-93.	2.2	76
83	Post-activation potentiation and depression in the neocortex of the rat: II. Chronic preparations. Brain Research, 1994, 637, 83-96.	2.2	32
84	Increased spontaneous unit discharge rates following electrical kindling in the rat. Brain Research, 1993, 624, 11-18.	2.2	30
85	Post-stroke recovery therapies in animals. , 0, , 35-46.		1

86 Paradoxical phenomena in brain plasticity. , 0, , 350-364.

0