Hun Young Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6444805/publications.pdf

Version: 2024-02-01

49 papers

1,686

304743

22

h-index

302126 39 g-index

52 all docs 52 docs citations

52 times ranked 1570 citing authors

#	Article	IF	CITATIONS
1	Highly Diastereo- and Enantioselective Aldol Reaction of Methyl \hat{I} ±-Isocyanoacetate: A Cooperative Catalysis Approach. Organic Letters, 2011, 13, 1306-1309.	4.6	136
2	Stereodivergency in Catalytic Asymmetric Conjugate Addition Reactions of Glycine (Ket)imines. Journal of the American Chemical Society, 2011, 133, 20750-20753.	13.7	132
3	Reversal of Enantioselectivity between the Copper(I)―and Silver(I)â€Catalyzed 1,3â€Dipolar Cycloaddition Reactions Using a Brucineâ€Derived Amino Alcohol Ligand. Angewandte Chemie - International Edition, 2009, 48, 7420-7423.	13.8	117
4	Brucine-Derived Amino Alcohol Catalyzed Asymmetric Henry Reaction: An Orthogonal Enantioselectivity Approach. Organic Letters, 2009, 11, 5682-5685.	4.6	99
5	Direct Acyl Radical Addition to $2 < i > H < / i > -Indazoles$ Using Ag-Catalyzed Decarboxylative Cross-Coupling of \hat{l} ±-Keto Acids. Organic Letters, 2018, 20, 2711-2715.	4.6	97
6	Orthogonal Enantioselectivity Approaches Using Homogeneous and Heterogeneous Catalyst Systems: Friedel–Crafts Alkylation of Indole. Angewandte Chemie - International Edition, 2010, 49, 4476-4478.	13.8	62
7	Efficient Approaches to the Stereoselective Synthesis of Cyclopropyl Alcohols. Accounts of Chemical Research, 2012, 45, 1533-1547.	15.6	62
8	Electrochemical Radical–Radical Cross-Coupling Approach between Sodium Sulfinates and 2 <i>H</i> -Indazoles to 3-Sulfonylated 2 <i>H</i> -Indazoles. Organic Letters, 2020, 22, 6319-6323.	4.6	62
9	Studies on Elimination Pathways of \hat{l}^2 -Halovinyl Ketones Leading to Allenyl and Propargyl Ketones and Furans under the Action of Mild Bases. Journal of Organic Chemistry, 2012, 77, 11132-11145.	3.2	54
10	<i>o</i> -Naphthoquinone-Catalyzed Aerobic Oxidation of Amines to (Ket)imines: A Modular Catalyst Approach. Organic Letters, 2016, 18, 5174-5177.	4.6	51
11	Unified Approach to (Thio)chromenones via One-Pot Friedel–Crafts Acylation/Cyclization: Distinctive Mechanistic Pathways of β-Chlorovinyl Ketones. Organic Letters, 2017, 19, 312-315.	4.6	47
12	A Facile Access to 4-Substituted-2-naphthols via a Tandem Friedel–Crafts Reaction: A β-Chlorovinyl Ketone Pathway. Organic Letters, 2014, 16, 5934-5936.	4.6	44
13	Visible-Light-Promoted Thiyl Radical Generation from Sodium Sulfinates: A Radical–Radical Coupling to Thioesters. Organic Letters, 2019, 21, 3774-3779.	4.6	44
14	Biomimetic Oxidative Deamination Catalysis via <i>ortho</i> Oxidation Strategy. ACS Catalysis, 2018, 8, 4986-4990.	11.2	41
15	Reversal of Enantioselectivity Approach to BINOLs via Single and Dual 2-Naphthol Activation Modes. Organic Letters, 2017, 19, 3867-3870.	4.6	39
16	A Soft Vinyl Enolization Approach to αâ€Acylvinyl Anions: Direct Aldol/Aldol Condensation Reactions of (<i>E</i>)â€Î²â€Chlorovinyl Ketones. Angewandte Chemie - International Edition, 2013, 52, 3736-3740.	13.8	35
17	Enantiodivergent Brucine Diolâ€Catalyzed 1,3â€Dipolar Cycloaddition of Azomethine Ylides with α,βâ€Unsaturated Ketones. Advanced Synthesis and Catalysis, 2016, 358, 984-993.	4.3	32
18	Ambivalent Reactivity Modes of βâ€Chlorovinyl Ketones: Electrophilic Lithium [3]Cumulenolates from Soft Vinyl Enolization Strategy. Angewandte Chemie - International Edition, 2013, 52, 8026-8030.	13.8	29

#	Article	IF	Citations
19	Regioselective Synthesis of Pyrroles from Alkyneâ€lsocyanide Click Reactions: An Angle Strainâ€Induced Bond Migration Approach. Advanced Synthesis and Catalysis, 2016, 358, 3714-3718.	4.3	28
20	Regiodivergent Halogenation of $(\langle i \rangle E \langle i \rangle)$ - \hat{l}^2 -Chlorovinyl Ketones via Soft \hat{l} ±-Vinyl Enolization Strategy. Organic Letters, 2015, 17, 450-453.	4.6	25
21	Rhodium(I)-Catalyzed Decarbonylative Aerobic Oxidation of Cyclic α-Diketones: A Regioselective Single Carbon Extrusion Strategy. Organic Letters, 2018, 20, 942-945.	4.6	25
22	1,3-Dienones and $2 < i > H < /i >$ -Pyran-2-ones from Soft $\hat{l} \pm$ -Vinyl Enolization of \hat{l}^2 -Chlorovinyl Ketones: Defined Roles of Br \hat{A} ¶nsted and Lewis Base. Organic Letters, 2015, 17, 6254-6257.	4.6	24
23	Continuous Flow Synthesis of Isoxazoles via Vinyl Azides from Friedel–Crafts Acylation of Alkynes: A Modulated Troubleshooting Optimization Approach. Organic Letters, 2019, 21, 10063-10068.	4.6	22
24	Oxidation Potential-Guided Electrochemical Radical–Radical Cross-Coupling Approaches to 3-Sulfonylated Imidazopyridines and Indolizines. Journal of Organic Chemistry, 2021, 86, 15973-15991.	3.2	22
25	Silver-Catalyzed Asymmetric Desymmetrization of Cyclopentenediones via $[3 + 2]$ Cycloaddition with \hat{l}_{\pm} -Substituted Isocyanoacetates. Organic Letters, 2018, 20, 2249-2252.	4.6	21
26	Visible Light-Promoted Friedel–Crafts-Type Chloroacylation of Alkenes to β-Chloroketones. Organic Letters, 2020, 22, 3018-3022.	4.6	21
27	Copper(II)â€Catalyzed Aerobic Oxidation of Amines: Divergent Reaction Pathways by Solvent Control to Imines and Nitriles. Asian Journal of Organic Chemistry, 2019, 8, 1674-1679.	2.7	20
28	Substrate Promiscuity of <i>ortho</i> -Naphthoquinone Catalyst: Catalytic Aerobic Amine Oxidation Protocols to Deaminative Cross-Coupling and <i>N</i> -Nitrosation. ACS Catalysis, 2019, 9, 9216-9221.	11.2	20
29	(<i>E</i>)-Selective Friedel–Crafts acylation of alkynes to β-chlorovinyl ketones: defying isomerizations in batch reactions by flow chemistry approaches. Organic Chemistry Frontiers, 2019, 6, 1868-1872.	4.5	20
30	Tandem Reaction Approaches to Isoquinolones from 2-Vinylbenzaldehydes and Anilines via Imine Formation–6π-Electrocyclization–Aerobic Oxidation Sequence. Organic Letters, 2020, 22, 474-478.	4.6	20
31	A One-Pot Synthesis of Pyranone and Pyrrole Derivatives from \hat{I}^2 -Chlorovinyl Ketones via Direct Conjugate Addition Approach. Organic Letters, 2017, 19, 4904-4907.	4.6	19
32	Substituted Pyrrololactams via Ring Expansion of Spiro-2 <i>H</i> -pyrroles from Intermolecular Alkyne–Isocyanide Click Reactions. Organic Letters, 2017, 19, 628-631.	4.6	18
33	Aerobic Oxidation Approaches to Indole-3-carboxylates: A Tandem Cross Coupling of Amines–Intramolecular Mannich–Oxidation Sequence. Organic Letters, 2019, 21, 6731-6735.	4.6	17
34	Stereodivergent Asymmetric Reactions Catalyzed by Brucine Diol. Synlett, 2015, 26, 2067-2087.	1.8	16
35	Visible-Light-Induced Photoaddition of <i>N</i> -Nitrosoalkylamines to Alkenes: One-Pot Tandem Approach to 1,2-Diamination of Alkenes from Secondary Amines. Organic Letters, 2021, 23, 3105-3109.	4.6	16
36	One-Pot Tandem ortho-Naphthoquinone-Catalyzed Aerobic Nitrosation of N-Alkylanilines and Rh(III)-Catalyzed C–H Functionalization Sequence to Indole and Aniline Derivatives. Journal of Organic Chemistry, 2021, 86, 1152-1163.	3.2	15

#	Article	IF	CITATIONS
37	Recent advances in the copper-catalyzed aerobic C _{sp3} â€"H oxidation strategy. Organic and Biomolecular Chemistry, 2021, 19, 3569-3583.	2.8	15
38	Silver-Catalyzed Asymmetric Desymmetrization of Cyclohexadienones via Van Leusen Pyrrole Synthesis. Organic Letters, 2022, 24, 1812-1816.	4.6	13
39	Cooperative Pd/Cu Catalysis to Spiro[indoline-2,3′-pyrrolidin]-2′-ones: Tandem Benzylation of α-lsocyano Lactams, Amine Addition, and N-Arylation. Organic Letters, 2019, 21, 5747-5752.	4.6	12
40	Palladium-Catalyzed Aerobic Oxidative Hydroamination of Vinylarenes Using Anilines: A Wacker-Type Amination Pathway. Organic Letters, 2017, 19, 5264-5267.	4.6	11
41	Tandem Transformations via Friedel–Crafts Acylation Followed by a Ring-Expansion, Ring-Opening, and Cycloisomerization Sequence. Organic Letters, 2019, 21, 696-699.	4.6	11
42	Bioinspired <i>>o</i> -Naphthoquinone-Catalyzed Aerobic Oxidation of Alcohols to Aldehydes and Ketones. Organic Letters, 2022, 24, 4982-4986.	4.6	11
43	Copper(<scp>i</scp>)/DM-SEGPHOS-catalyzed enantio- and diastereoselective conjugate boration to α-alkylidene-γ-lactams. Organic Chemistry Frontiers, 2020, 7, 709-714.	4.5	9
44	<i>ortho</i> -Naphthoquinone-catalyzed aerobic oxidation of amines to fused pyrimidin-4(3 <i>H</i>)-ones: a convergent synthetic route to bouchardatine and sildenafil. RSC Advances, 2020, 10, 31101-31105.	3.6	8
45	Divergent Reaction Pathways of βâ€Chlorovinyl Ketones: Microwaveâ€Assisted Thermal Nazarov Cyclization versus Cycloisomerization via Soft Vinyl Enolization. Advanced Synthesis and Catalysis, 2020, 362, 1391-1398.	4.3	7
46	Divergent Halogenation Pathways of 2,2â€Dichlorobutâ€3â€ynâ€1â€ols to 3â€Chloroâ€4â€lodofurans and αâ€Chloroâ€Î³â€lodoallenes: Electrophilic versus Pd(II)â€Catalyzed Halogenation Strategies. Advanced Synthesis and Catalysis, 2020, 362, 5368-5373.	4.3	6
47	One-Pot Synthesis of <i>N</i> -Hydroxypyrroles via Soft α-Vinyl Enolization of (<i>E</i>)-β-Chlorovinyl Ketones: A Traceless Arylsulfinate Mediator Strategy. Organic Letters, 2022, , .	4.6	6
48	Oneâ€Pot Direct Oxidation of Primary Amines to Carboxylic Acids through Tandem <i>ortho</i> â€Naphthoquinoneâ€Catalyzed and TBHPâ€Promoted Oxidation Sequence. Chemistry - A European Journal, 2021, 27, 18150-18155.	3.3	5
49	Continuous Flow Synthesis of 1,4-Benzothiazines Using Ambivalent Reactivity of (<i>E</i>)-β-Chlorovinyl Ketones: A Point of Reaction Control Enabled by Flow Chemistry. Organic Letters, 2022, 24, 5287-5292.	4.6	3