Jinwoo Lee

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/644474/jinwoo-lee-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 248
 19,962
 74
 135

 papers
 citations
 h-index
 g-index

 265
 21,971
 10.6
 7

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
248	Surface Conversion Derived Core-Shell Nanostructures of Co Particles@RuCo Alloy for Superior Hydrogen Evolution in Alkali and Seawater. <i>Applied Catalysis B: Environmental</i> , 2022 , 121554	21.8	3
247	Recent advances in non-precious group metal-based catalysts for water electrolysis and beyond. Journal of Materials Chemistry A, 2021 , 10, 50-88	13	4
246	Activation of Inert Copper for Significantly Enhanced Hydrogen Evolution Behaviors by Trace Ruthenium Doping. <i>Nano Energy</i> , 2021 , 106763	17.1	5
245	Effects of functional supports on efficiency and stability of atomically dispersed noble-metal electrocatalysts. <i>EnergyChem</i> , 2021 , 3, 100054	36.9	8
244	Design of grain boundary enriched bimetallic borides for enhanced hydrogen evolution reaction. <i>Chemical Engineering Journal</i> , 2021 , 405, 126977	14.7	22
243	Ultrathin and Bifunctional Polymer-Nanolayer-Embedded Separator to Simultaneously Alleviate Li Dendrite Growth and Polysulfide Crossover in Liß Batteries. <i>ACS Applied Energy Materials</i> , 2021 , 4, 611-6	522 ¹	8
242	A biopolymer-based functional separator for stable Li metal batteries with an additive-free commercial electrolyte. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 7774-7781	13	7
241	Vanadium oxide bronzes as cathode active materials for non-lithium-based batteries. CrystEngComm, 2021 , 23, 5267-5283	3.3	1
240	Biomass-Derived P, N Self-Doped Hard Carbon as Bifunctional Oxygen Electrocatalyst and Anode Material for Seawater Batteries. <i>Advanced Functional Materials</i> , 2021 , 31, 2010882	15.6	16
239	Polymer Interface-Dependent Morphological Transition toward Two-Dimensional Porous Inorganic Nanocoins as an Ultrathin Multifunctional Layer for Stable Lithium-Sulfur Batteries. <i>Journal of the American Chemical Society</i> , 2021 , 143, 15644-15652	16.4	6
238	Structure engineering defective and mass transfer-enhanced RuO2 nanosheets for proton exchange membrane water electrolyzer. <i>Nano Energy</i> , 2021 , 88, 106276	17.1	14
237	Spinodal decomposition: a new approach to hierarchically porous inorganic materials for energy storage. <i>National Science Review</i> , 2020 , 7, 1635-1637	10.8	9
236	Mesoporous carbon host material for stable lithium metal anode. <i>Nanoscale</i> , 2020 , 12, 11818-11824	7.7	28
235	Compressive Properties of Nanoporous Gold Through Nanoindentation: An Analytical Approach Based on the Expanding Cavity Model. <i>Metals and Materials International</i> , 2020 , 27, 3787	2.4	1
234	Solid-state conversion of metal oleate precursors for the preparation of LiNi1/3Co1/3Mn1/3O2 as cathode material for lithium-ion batteries. <i>Korean Journal of Chemical Engineering</i> , 2020 , 37, 1258-1265	2.8	4
233	Interaction Mediator Assisted Synthesis of Mesoporous Molybdenum Carbide: Mo-Valence State Adjustment for Optimizing Hydrogen Evolution. <i>ACS Nano</i> , 2020 , 14, 4988-4999	16.7	50
232	Plasma-Assisted Catalytic Effects of TiO2/Macroporous SiO2 on the Synthesis of Light Hydrocarbons from Methane. <i>ChemCatChem</i> , 2020 , 12, 5067-5075	5.2	O

(2019-2020)

231	Selective electrocatalysis imparted by metall insulator transition for durability enhancement of automotive fuel cells. <i>Nature Catalysis</i> , 2020 , 3, 639-648	36.5	32
230	Simultaneous Suppression of Shuttle Effect and Lithium Dendrite Growth by Lightweight Bifunctional Separator for Liß Batteries. <i>ACS Applied Energy Materials</i> , 2020 , 3, 2643-2652	6.1	16
229	Polymer Interfacial Self-Assembly Guided Two-Dimensional Engineering of Hierarchically Porous Carbon Nanosheets. <i>Journal of the American Chemical Society</i> , 2020 , 142, 9250-9257	16.4	58
228	A small-strain niobium nitride anode with ordered mesopores for ultra-stable potassium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 3119-3127	13	19
227	Metal-free cathodic catalyst with nitrogen- and phosphorus-doped ordered mesoporous carbon (NPOMC) for microbial fuel cells. <i>Journal of Power Sources</i> , 2020 , 451, 227816	8.9	25
226	Transformation of carbon dioxide into carbon nanotubes for enhanced ion transport and energy storage. <i>Nanoscale</i> , 2020 , 12, 7822-7833	7.7	15
225	Heme Cofactor-Resembling FeN Single Site Embedded Graphene as Nanozymes to Selectively Detect H2O2 with High Sensitivity. <i>Advanced Functional Materials</i> , 2020 , 30, 1905410	15.6	99
224	Self color-changing ordered mesoporous ceria for reagent-free colorimetric biosensing. <i>Nanoscale</i> , 2020 , 12, 1419-1424	7.7	15
223	Crowding and confinement effects on enzyme stability in mesoporous silicas. <i>International Journal of Biological Macromolecules</i> , 2020 , 144, 118-126	7.9	7
222	Amorphous Cobalt Oxide Nanowalls as Catalyst and Protection Layers on n-Type Silicon for Efficient Photoelectrochemical Water Oxidation. <i>ACS Catalysis</i> , 2020 , 10, 420-429	13.1	18
221	A review on recent approaches for designing the SEI layer on sodium metal anodes. <i>Materials Advances</i> , 2020 , 1, 3143-3166	3.3	10
220	Development strategies in transition metal carbide for hydrogen evolution reaction: A review. <i>Korean Journal of Chemical Engineering</i> , 2020 , 37, 1317-1330	2.8	7
219	Polymer blend directed anisotropic self-assembly toward mesoporous inorganic bowls and nanosheets. <i>Science Advances</i> , 2020 , 6, eabb3814	14.3	26
218	Structural Design of Amorphous CoMoPx with Abundant Active Sites and Synergistic Catalysis Effect for Effective Water Splitting. <i>Advanced Functional Materials</i> , 2020 , 30, 2003889	15.6	49
217	How g-CN Works and Is Different from TiO as an Environmental Photocatalyst: Mechanistic View. <i>Environmental Science & Environmental &</i>	10.3	33
216	Carbon dioxide to solid carbon at the surface of iron nanoparticle: Hollow nanocarbons for sodium ion battery anode application. <i>Journal of CO2 Utilization</i> , 2019 , 34, 588-595	7.6	3
215	Thermally Robust Porous Bimetallic (Ni Pt) Alloy Mesocrystals within Carbon Framework: High-Performance Catalysts for Oxygen Reduction and Hydrogenation Reactions. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 21435-21444	9.5	9
214	A Comprehensive Review of Materials with Catalytic Effects in Liß Batteries: Enhanced Redox Kinetics. <i>Angewandte Chemie</i> , 2019 , 131, 18920-18931	3.6	49

213	A Comprehensive Review of Materials with Catalytic Effects in Li-S Batteries: Enhanced Redox Kinetics. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 18746-18757	16.4	221
212	Amorphous Tin Oxide Nanohelix Structure Based Electrode for Highly Reversible Na-Ion Batteries. <i>ACS Nano</i> , 2019 , 13, 6513-6521	16.7	22
211	N- and B-Codoped Graphene: A Strong Candidate To Replace Natural Peroxidase in Sensitive and Selective Bioassays. <i>ACS Nano</i> , 2019 , 13, 4312-4321	16.7	103
210	Versatile Strategy for Tuning ORR Activity of a Single Fe-N Site by Controlling Electron-Withdrawing/Donating Properties of a Carbon Plane. <i>Journal of the American Chemical Society</i> , 2019 , 141, 6254-6262	16.4	300
209	Spontaneous Generation of HO and Hydroxyl Radical through O Reduction on Copper Phosphide under Ambient Aqueous Condition. <i>Environmental Science & Environmental Science & En</i>	10.3	51
208	Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. <i>Nature Communications</i> , 2019 , 10, 940	17.4	191
207	Water Splitting Exceeding 17% Solar-to-Hydrogen Conversion Efficiency Using Solution-Processed Ni-Based Electrocatalysts and Perovskite/Si Tandem Solar Cell. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 33835-33843	9.5	39
206	Investigation of the Support Effect in Atomically Dispersed Pt on WO3½ for Utilization of Pt in the Hydrogen Evolution Reaction. <i>Angewandte Chemie</i> , 2019 , 131, 16184-16188	3.6	33
205	Investigation of the Support Effect in Atomically Dispersed Pt on WO for Utilization of Pt in the Hydrogen Evolution Reaction. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 16038-16042	16.4	133
204	Improved pseudocapacitive charge storage in highly ordered mesoporous TiO/carbon nanocomposites as high-performance Li-ion hybrid supercapacitor anodes <i>RSC Advances</i> , 2019 , 9, 378	82 -3 78	88
203	Controlled Leaching Derived Synthesis of Atomically Dispersed/Clustered Gold on Mesoporous Cobalt Oxide for Enhanced Oxygen Evolution Reaction Activity. <i>Small Methods</i> , 2019 , 3, 1800293	12.8	13
202	Approaching Ultrastable High-Rate Li-S Batteries through Hierarchically Porous Titanium Nitride Synthesized by Multiscale Phase Separation. <i>Advanced Materials</i> , 2019 , 31, e1806547	24	105
201	Rational Design of TiC-Supported Single-Atom Electrocatalysts for Hydrogen Evolution and Selective Oxygen Reduction Reactions. <i>ACS Energy Letters</i> , 2019 , 4, 126-132	20.1	69
200	Cu-Pd alloy nanoparticles as highly selective catalysts for efficient electrochemical reduction of CO2 to CO. <i>Applied Catalysis B: Environmental</i> , 2019 , 246, 82-88	21.8	102
199	Highly sensitive colorimetric detection of allergies based on an immunoassay using peroxidase-mimicking nanozymes. <i>Analyst, The</i> , 2018 , 143, 1182-1187	5	12
198	Selective charge transfer to dioxygen on KPF6-modified carbon nitride for photocatalytic synthesis of H2O2 under visible light. <i>Journal of Catalysis</i> , 2018 , 357, 51-58	7.3	62
197	Simple modification with amine- and hydroxyl- group rich biopolymer on ordered mesoporous carbon/sulfur composite for lithium-sulfur batteries. <i>Korean Journal of Chemical Engineering</i> , 2018 , 35, 579-586	2.8	32

19	95	Mesoporous tungsten oxynitride as electrocatalyst for promoting redox reactions of vanadium redox couple and performance of vanadium redox flow battery. <i>Applied Surface Science</i> , 2018 , 429, 187-	1975	46	
19	94	Soft-template synthesis of mesoporous non-precious metal catalyst with Fe-N x /C active sites for oxygen reduction reaction in fuel cells. <i>Applied Catalysis B: Environmental</i> , 2018 , 222, 191-199	21.8	90	
19	93	Comparative investigation of nitrogen species in transition metals incorporated carbon catalysts for the oxygen reduction reaction. <i>Chemical Physics Letters</i> , 2018 , 708, 42-47	2.5	2	
19	92	Cancer Therapy: Programmed Nanoparticle-Loaded Nanoparticles for Deep-Penetrating 3D Cancer Therapy (Adv. Mater. 29/2018). <i>Advanced Materials</i> , 2018 , 30, 1870213	24	11	
19	91	Synergistic Effect of Molecular-Type Electrocatalysts with Ultrahigh Pore Volume Carbon Microspheres for Lithium-Sulfur Batteries. <i>ACS Nano</i> , 2018 , 12, 6013-6022	16.7	61	
19	90	A novel strategy to develop non-noble metal catalyst for CO2 electroreduction: Hybridization of metal-organic polymer. <i>Applied Catalysis B: Environmental</i> , 2018 , 236, 154-161	21.8	30	
18	89	Enhancing Durability and Photoelectrochemical Performance of the Earth Abundant Ni-Mo/TiO /CdS/CIGS Photocathode under Various pH Conditions. <i>ChemSusChem</i> , 2018 , 11, 3679-3688	8.3	11	
18	88	Ni(OH) -WP Hybrid Nanorod Arrays for Highly Efficient and Durable Hydrogen Evolution Reactions in Alkaline Media. <i>ChemSusChem</i> , 2018 , 11, 3618-3624	8.3	26	
18	87	Precipitation-Based Nanoscale Enzyme Reactor with Improved Loading, Stability, and Mass Transfer for Enzymatic CO2 Conversion and Utilization. <i>ACS Catalysis</i> , 2018 , 8, 6526-6536	13.1	24	
18	86	Effects of Wet-Pressing and Cross-Linking on the Tensile Properties of Carbon Nanotube Fibers. <i>Materials</i> , 2018 , 11,	3.5	1	
18	85	Ostwald Ripening Driven Exfoliation to Ultrathin Layered Double Hydroxides Nanosheets for Enhanced Oxygen Evolution Reaction. <i>ACS Applied Materials & Double Hydroxides</i> , 2018 , 10, 44518-44526	9.5	31	
18	84	Sulfenic Acid Doped Mesocellular Carbon Foam as Powerful Catalyst for Activation of V(II)/V(III) Reaction in Vanadium Redox Flow Battery. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A2703-A27	. બુક ⁹	3	
18	83	Programmed Nanoparticle-Loaded Nanoparticles for Deep-Penetrating 3D Cancer Therapy. <i>Advanced Materials</i> , 2018 , 30, e1707557	24	56	
18	82	Generalized Access to Mesoporous Inorganic Particles and Hollow Spheres from Multicomponent Polymer Blends. <i>Advanced Materials</i> , 2018 , 30, e1801127	24	31	
18	81	Oxygen Evolution Reaction on Ni-based Two-dimensional (2D) Titanate Nanosheets: Investigation on Effect of Fe Co-doping and Fe Incorporation from Electrolyte on the Activity. <i>ChemistrySelect</i> , 2018 , 3, 5130-5137	1.8	6	
18	80	Ordered Mesoporous Titanium Nitride as a Promising Carbon-Free Cathode for Aprotic Lithium-Oxygen Batteries. <i>ACS Nano</i> , 2017 , 11, 1736-1746	16.7	104	
1,	79	Inorganic Rubidium Cation as an Enhancer for Photovoltaic Performance and Moisture Stability of HC(NH2)2PbI3 Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2017 , 27, 1605988	15.6	148	
1,	78	Enhanced performance of sulfur-infiltrated bimodal mesoporous carbon foam by chemical solution deposition as cathode materials for lithium sulfur batteries. <i>Scientific Reports</i> , 2017 , 7, 42238	4.9	17	

177	Design and roles of RGO-wrapping in charge transfer and surface passivation in photoelectrochemical enhancement of cascade-band photoanode. <i>Nano Research</i> , 2017 , 10, 2415-2430	10	9
176	Single enzyme nanoparticles armored by a thin silicate network: Single enzyme caged nanoparticles. <i>Chemical Engineering Journal</i> , 2017 , 322, 510-515	14.7	16
175	Simple synthesis of multiple length-scale structured NbO with functional macrodomain-integrated mesoporous frameworks. <i>Chemical Communications</i> , 2017 , 53, 4100-4103	5.8	9
174	Quenching of material dependence in few-cycle driven electron acceleration from nanoparticles under many-particle charge interaction. <i>Journal of Modern Optics</i> , 2017 , 64, 995-1003	1.1	14
173	Pt-Decorated Magnetic Nanozymes for Facile and Sensitive Point-of-Care Bioassay. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 35133-35140	9.5	82
172	Enzyme-Driven Hasselback-Like DNA-Based Inorganic Superstructures. <i>Advanced Functional Materials</i> , 2017 , 27, 1704213	15.6	22
171	Rational design of Li3VO4@carbon coreBhell nanoparticles as Li-ion hybrid supercapacitor anode materials. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 20969-20977	13	26
170	Solvothermal synthesis of sodium cobalt fluoride (NaCoF3) nanoparticle clusters. <i>Materials Letters</i> , 2017 , 207, 89-92	3.3	6
169	Tracking the confinement effect of highly dispersive carbon in a tungsten oxide/carbon nanocomposite: conversion anode materials in lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 24782-24789	13	14
168	General Synthesis of N-Doped Macroporous Graphene-Encapsulated Mesoporous Metal Oxides and Their Application as New Anode Materials for Sodium-Ion Hybrid Supercapacitors. <i>Advanced Functional Materials</i> , 2017 , 27, 1603921	15.6	106
167	Ammonium Fluoride Mediated Synthesis of Anhydrous Metal Fluoride-Mesoporous Carbon Nanocomposites for High-Performance Lithium Ion Battery Cathodes. <i>ACS Applied Materials & Interfaces</i> , 2016 , 8, 35180-35190	9.5	49
166	Direct access to aggregation-free and small intermetallic nanoparticles in ordered, large-pore mesoporous carbon for an electrocatalyst. <i>RSC Advances</i> , 2016 , 6, 88255-88264	3.7	10
165	High-Performance Sodium-Ion Hybrid Supercapacitor Based on Nb2O5@Carbon CoreBhell Nanoparticles and Reduced Graphene Oxide Nanocomposites. <i>Advanced Functional Materials</i> , 2016 , 26, 3711-3719	15.6	312
164	MoO2 nanocrystals interconnected on mesocellular carbon foam as a powerful catalyst for vanadium redox flow battery. <i>RSC Advances</i> , 2016 , 6, 17574-17582	3.7	48
163	Solar Hydrogen Production from Zinc Telluride Photocathode Modified with Carbon and Molybdenum Sulfide. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 7748-55	9.5	29
162	A mini review of designed mesoporous materials for energy-storage applications: from electric double-layer capacitors to hybrid supercapacitors. <i>Nanoscale</i> , 2016 , 8, 7827-33	7.7	136
161	Efficient protein digestion using highly-stable and reproducible trypsin coatings on magnetic nanofibers. <i>Chemical Engineering Journal</i> , 2016 , 288, 770-777	14.7	14
160	Cyanoacetic acid tethered thiophene for well-matched LUMO level in Ru(II)-terpyridine dye sensitized solar cells. <i>Dyes and Pigments</i> , 2016 , 126, 270-278	4.6	7

(2015-2016)

Bulk Concentration Dependence of Electrolyte Resistance Within Mesopores of Carbon Electrodes in Electric Double-Layer Capacitors. <i>Bulletin of the Korean Chemical Society</i> , 2016 , 37, 213-218	1.2	2
Unbiased Sunlight-Driven Artificial Photosynthesis of Carbon Monoxide from CO2 Using a ZnTe-Based Photocathode and a Perovskite Solar Cell in Tandem. <i>ACS Nano</i> , 2016 , 10, 6980-7	16.7	97
Facile synthesis of a mesostructured TiO2graphitized carbon (TiO2gC) composite through the hydrothermal process and its application as the anode of lithium ion batteries. <i>RSC Advances</i> , 2016 , 6, 39484-39491	3.7	20
Vertically aligned nanostructured TiO2 photoelectrodes for high efficiency perovskite solar cells via a block copolymer template approach. <i>Nanoscale</i> , 2016 , 8, 11472-9	7.7	40
Facile conversion of activated carbon to battery anode material using microwave graphitization. <i>Carbon</i> , 2016 , 104, 106-111	10.4	35
A tailored TiO2 electron selective layer for high-performance flexible perovskite solar cells via low temperature UV process. <i>Nano Energy</i> , 2016 , 28, 380-389	17.1	100
Ordered-mesoporous Nb2O5/carbon composite as a sodium insertion material. <i>Nano Energy</i> , 2015 , 16, 62-70	17.1	104
Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation. <i>ACS Applied Materials & Discrete Applied & </i>	9.5	249
Ultrafast synthesis of MoS2 or WS2-reduced graphene oxide composites via hybrid microwave annealing for anode materials of lithium ion batteries. <i>Journal of Power Sources</i> , 2015 , 295, 228-234	8.9	66
Stabilized glycerol dehydrogenase for the conversion of glycerol to dihydroxyacetone. <i>Chemical Engineering Journal</i> , 2015 , 276, 283-288	14.7	24
Facile Synthesis of Nb2O5@Carbon Core-Shell Nanocrystals with Controlled Crystalline Structure for High-Power Anodes in Hybrid Supercapacitors. <i>ACS Nano</i> , 2015 , 9, 7497-505	16.7	340
Crosslinked chitosan coating on magnetic mesoporous silica with pre-adsorbed carbonic anhydrase for carbon dioxide conversion. <i>Chemical Engineering Journal</i> , 2015 , 276, 232-239	14.7	21
Salt-assisted synthesis of mesostructured cellular foams consisting of small primary particles with enhanced hydrothermal stability. <i>Microporous and Mesoporous Materials</i> , 2015 , 212, 66-72	5.3	3
Mesoporous Ge/GeO2/Carbon Lithium-Ion Battery Anodes with High Capacity and High Reversibility. <i>ACS Nano</i> , 2015 , 9, 5299-309	16.7	141
Development of Highly Stable and Mass Transfer-Enhanced Cathode Catalysts: Support-Free Electrospun Intermetallic FePt Nanotubes for Polymer Electrolyte Membrane Fuel Cells. <i>Advanced Energy Materials</i> , 2015 , 5, 1402093	21.8	54
Simple and Sensitive Point-of-Care Bioassay System Based on Hierarchically Structured Enzyme-Mimetic Nanoparticles. <i>Advanced Healthcare Materials</i> , 2015 , 4, 1311-6	10.1	37
Direct confinement of Ru nanoparticles inside nanochannels of large pore mesoporous aluminosilicate for Fischer Tropsch synthesis. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 23725-23731	13	5
Highly efficient perovskite solar cells based on mechanically durable molybdenum cathode. <i>Nano Energy</i> , 2015 , 17, 131-139	17.1	35
	In Electric Double-Layer Capacitors. <i>Bulletin of the Korean Chemical Society</i> , 2016, 37, 213-218 Unbiased Sunlight-Driven Artificial Photosynthesis of Carbon Monoxide from CO2 Using a Zn1e-Based Photocathode and a Perovskite Solar Cell in Tandem. <i>ACS Mana</i> , 2016, 10, 6980-7 Facile synthesis of a mesostructured TiO2graphitized carbon (TiO2giC) composite through the hydrothermal process and its application as the anode of lithium ion batteries. <i>RSC Advances</i> , 2016, 6, 39484-39491 Vertically aligned nanostructured TiO2 photoelectrodes for high efficiency perovskite solar cells via a block copolymer template approach. <i>Nanoscale</i> , 2016, 8, 11472-9 Facile conversion of activated carbon to battery anode material using microwave graphitization. <i>Carbon</i> , 2016, 104, 106-111 A tailored TiO2 electron selective layer for high-performance flexible perovskite solar cells via low temperature UV process. <i>Nano Energy</i> , 2016, 28, 380-389 Ordered-mesoporous Nb2O5/carbon composite as a sodium insertion material. <i>Nano Energy</i> , 2015, 16, 62-70 Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation. <i>ACS Applied Materials & Amp: Interfaces</i> , 2015, 7, 17330-6 Ultrafast synthesis of MoS2 or WS2-reduced graphene oxide composites via hybrid microwave annealing for anode materials of lithium ion batteries. <i>Journal of Power Sources</i> , 2015, 295, 228-234 Stabilized glycerol dehydrogenase for the conversion of glycerol to dihydroxyacetone. <i>Chemical Engineering Journal</i> , 2015, 276, 283-288 Facile Synthesis of Nb2O5@Carbon Core-Shell Nanocrystals with Controlled Crystalline Structure for High-Power Anodes in Hybrid Supercapacitors. <i>ACS Nano</i> , 2015, 9, 7497-505 Crosslinked chitosan coating on magnetic mesoporous silica with pre-adsorbed carbonic anhydrase for carbon dioxide conversion. <i>Chemical Engineering Journal</i> , 2015, 276, 232-239 Salt-assisted synthesis of mesostructured cellular foams consisting offsmall primary particles with enhanced hydrothermal stability. <i>Microporous and M</i>	In Electric Double-Layer Capacitors. <i>Bulletin of the Korean Chemical Society</i> , 2016, 37, 213-218 1.2. Unbiased Sunlight-Driven Artificial Photosynthesis of Carbon Monoxide from CO2 Using a ZnTe-Based Photocathode and a Perovskite Solar Cell in Tandem. <i>ACS Nana</i> , 2016, 10, 6980-7 Facile synthesis of a mesostructured TiO2graphitized carbon (TiO2gC) composite through the hydrothermal process and its application as the anode of lithium ion batteries. <i>RSC Advances</i> , 2016, 6, 39484-39491 Vertically aligned nanostructured TiO2 photoelectrodes for high efficiency perovskite solar cells via a block copolymer template approach. <i>Nanoscale</i> , 2016, 8, 11472-9 Facile conversion of activated carbon to battery anode material using microwave graphitization. A tailored TiO2 electron selective layer for high-performance flexible perovskite solar cells via low temperature UV process. <i>Nano Energy</i> , 2016, 28, 380-389 Ordered-mesoporous Nb2O5/carbon composite as a sodium insertion material. <i>Nano Energy</i> , 2015, 16, 62-70 Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation. <i>ACS Applied Materials Ramp; Interfaces</i> , 2015, 7, 17330-6 Ultrafast synthesis of MoS2 or WS2-reduced graphene oxide composites via hybrid microwave annealing for anode materials of lithium ion batteries. <i>Journal of Power Sources</i> , 2015, 295, 228-234 Stabilized glycerol dehydrogenase for the conversion of glycerol to dihydroxyacetone. <i>Chemical Engineering Journal</i> , 2015, 276, 283-288 Facile Synthesis of Nb2O5@Carbon Core-Shell Nanocrystals with Controlled Crystalline Structure for High-Power Anodes in Hybrid Supercapacitors. <i>ACS Nano</i> , 2015, 9, 7497-505 Crosslinked chitosan coating on magnetic mesoporous silica with pre-adsorbed carbonic anhydrase for carbon dioxide conversion. <i>Chemical Engineering Journal</i> , 2015, 276, 232-239 147 Salt-assisted synthesis of mesostructured cellular foams consisting offsmall primary particles with enhanced hydrothermal stability. <i>Microporous and Mesoporous Materials</i>

141	Highly mesoporous silicon derived from waste iron slag for high performance lithium ion battery anodes. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 21899-21906	13	26
140	Fabrication of conductive oxidase-entrapping nanocomposite of mesoporous cerialarbon for efficient electrochemical biosensor. <i>RSC Advances</i> , 2015 , 5, 78747-78753	3.7	7
139	Selective CO production by Au coupled ZnTe/ZnO in the photoelectrochemical CO2 reduction system. <i>Energy and Environmental Science</i> , 2015 , 8, 3597-3604	35.4	122
138	Effect of mesocelluar carbon foam electrode material on performance of vanadium redox flow battery. <i>Journal of Power Sources</i> , 2015 , 278, 245-254	8.9	30
137	One pot synthesis of mesoporous boron nitride using polystyrene-b-poly(ethylene oxide) block copolymer. <i>RSC Advances</i> , 2015 , 5, 6528-6535	3.7	21
136	Awakening Solar Water-Splitting Activity of ZnFe2O4 Nanorods by Hybrid Microwave Annealing. <i>Advanced Energy Materials</i> , 2015 , 5, 1401933	21.8	85
135	Reversibility of Lithium-IonAir Batteries Using Lithium Intercalation Compounds as Anodes. <i>ChemPlusChem</i> , 2015 , 80, 349-353	2.8	5
134	Flexible Solar Cells: Mechanically Recoverable and Highly Efficient Perovskite Solar Cells: Investigation of Intrinsic Flexibility of OrganicInorganic Perovskite (Adv. Energy Mater. 22/2015). Advanced Energy Materials, 2015, 5, n/a-n/a	21.8	2
133	Effect of Mesoporous Structured Cathode Materials on Charging Potentials and Rate Capability of Lithium-Oxygen Batteries. <i>ChemSusChem</i> , 2015 , 8, 3146-52	8.3	16
132	Influence of Metal Particle Size on Oxidative CO2 Reforming of Methane over Supported Nickel Catalysts: Effects of Second-Metal Addition. <i>ChemCatChem</i> , 2015 , 7, 1445-1452	5.2	24
131	Designing a Highly Active Metal-Free Oxygen Reduction Catalyst in Membrane Electrode Assemblies for Alkaline Fuel Cells: Effects of Pore Size and Doping-Site Position. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 9230-4	16.4	105
130	Designing a Highly Active Metal-Free Oxygen Reduction Catalyst in Membrane Electrode Assemblies for Alkaline Fuel Cells: Effects of Pore Size and Doping-Site Position. <i>Angewandte Chemie</i> , 2015 , 127, 9362-9366	3.6	9
129	Mechanically Recoverable and Highly Efficient Perovskite Solar Cells: Investigation of Intrinsic Flexibility of OrganicInorganic Perovskite. <i>Advanced Energy Materials</i> , 2015 , 5, 1501406	21.8	106
128	Structural Effect on Electrochemical Performance of Ordered Porous Carbon Electrodes for Na-Ion Batteries. <i>ACS Applied Materials & District Materials</i> (1748-54)	9.5	51
127	Carbonate-coordinated cobalt co-catalyzed BiVO4/WO3 composite photoanode tailored for CO2 reduction to fuels. <i>Nano Energy</i> , 2015 , 15, 153-163	17.1	91
126	Polymer-coated spherical mesoporous silica for pH-controlled delivery of insulin. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 616-619	7.3	28
125	Silicon-Rich Carbon Hybrid Nanofibers from Water-Based Spinning: The Synergy Between Silicon and Carbon for Li-ion Battery Anode Application. <i>ChemElectroChem</i> , 2014 , 1, 220-226	4.3	20
124	Highly efficient colorimetric detection of target cancer cells utilizing superior catalytic activity of graphene oxide-magnetic-platinum nanohybrids. <i>Nanoscale</i> , 2014 , 6, 1529-36	7.7	98

(2013-2014)

123	C60 aminofullerene-magnetite nanocomposite designed for efficient visible light photocatalysis and magnetic recovery. <i>Carbon</i> , 2014 , 69, 92-100	10.4	21
122	Direct access to hierarchically porous inorganic oxide materials with three-dimensionally interconnected networks. <i>Journal of the American Chemical Society</i> , 2014 , 136, 16066-72	16.4	98
121	A highly sensitive immunoassay using antibody-conjugated spherical mesoporous silica with immobilized enzymes. <i>Chemical Communications</i> , 2014 , 50, 3546-8	5.8	18
120	Low-cost electrospun WC/C composite nanofiber as a powerful platinum-free counter electrode for dye sensitized solar cell. <i>Nano Energy</i> , 2014 , 9, 392-400	17.1	73
119	Simple fabrication of flexible electrodes with high metal-oxide content: electrospun reduced tungsten oxide/carbon nanofibers for lithium ion battery applications. <i>Nanoscale</i> , 2014 , 6, 10147-55	7.7	71
118	Reverse micelle synthesis of colloidal nickel-manganese layered double hydroxide nanosheets and their pseudocapacitive properties. <i>Chemistry - A European Journal</i> , 2014 , 20, 14880-4	4.8	67
117	Advanced hybrid supercapacitor based on a mesoporous niobium pentoxide/carbon as high-performance anode. <i>ACS Nano</i> , 2014 , 8, 8968-78	16.7	339
116	Palladium oxide as a novel oxygen evolution catalyst on BiVO4 photoanode for photoelectrochemical water splitting. <i>Journal of Catalysis</i> , 2014 , 317, 126-134	7-3	56
115	Effective antifouling using quorum-quenching acylase stabilized in magnetically-separable mesoporous silica. <i>Biomacromolecules</i> , 2014 , 15, 1153-9	6.9	48
114	Block Copolymer Directed Ordered Mesostructured TiNb2O7 Multimetallic Oxide Constructed of Nanocrystals as High Power Li-Ion Battery Anodes. <i>Chemistry of Materials</i> , 2014 , 26, 3508-3514	9.6	137
113	Improvement of desolvation and resilience of alginate binders for Si-based anodes in a lithium ion battery by calcium-mediated cross-linking. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 25628-35	3.6	73
112	A highly efficient colorimetric immunoassay using a nanocomposite entrapping magnetic and platinum nanoparticles in ordered mesoporous carbon. <i>Advanced Healthcare Materials</i> , 2014 , 3, 36-41	10.1	49
111	Electrochemical Activity Studies of Glucose Oxidase (GOx)-Based and Pyranose Oxidase (POx)-Based Electrodes in Mesoporous Carbon: Toward Biosensor and Biofuel Cell Applications. <i>Electroanalysis</i> , 2014 , 26, 2075-2079	3	9
110	A direct one-step synthetic route to Pd P t nanostructures with controllable shape, size, and composition for electrocatalytic applications. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 19239-19246	13	19
109	Synthesis of hierarchical linearly assembled graphitic carbon nanoparticles via catalytic graphitization in SBA-15. <i>Carbon</i> , 2014 , 75, 95-103	10.4	26
108	Magnetically recoverable hybrid TiO2 nanocrystal clusters with enhanced photocatalytic activity. <i>Materials Letters</i> , 2013 , 93, 141-144	3.3	16
107	TiO2 nanodisks designed for Li-ion batteries: a novel strategy for obtaining an ultrathin and high surface area anode material at the ice interface. <i>Energy and Environmental Science</i> , 2013 , 6, 2932	35.4	90
106	Enhanced stability and reusability of marine epoxide hydrolase using ship-in-a-bottle approach with magnetically-separable mesoporous silica. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2013 , 89, 48-51		23

105	Simple synthesis of hierarchically structured partially graphitized carbon by emulsion/block-copolymer co-template method for high power supercapacitors. <i>Carbon</i> , 2013 , 64, 391-	4 62 .4	81
104	Ordered mesoporous carbon electrodes for Li-O2 batteries. <i>ACS Applied Materials & Description</i> (2013, 5, 13426-31)	9.5	59
103	Block-Copolymer-Assisted One-Pot Synthesis of Ordered Mesoporous WO3½/Carbon Nanocomposites as High-Rate-Performance Electrodes for Pseudocapacitors. <i>Advanced Functional Materials</i> , 2013 , 23, 3747-3754	15.6	126
102	Ordered mesoporous tungsten suboxide counter electrode for highly efficient iodine-free electrolyte-based dye-sensitized solar cells. <i>ChemSusChem</i> , 2013 , 6, 299-307	8.3	25
101	Functional mesoporous materials for energy applications: solar cells, fuel cells, and batteries. <i>Nanoscale</i> , 2013 , 5, 4584-605	7.7	100
100	Using waste Li ion batteries as cathodes in rechargeable Li-liquid batteries. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 7036-40	3.6	9
99	One-pot synthesis of tin-embedded carbon/silica nanocomposites for anode materials in lithium-ion batteries. <i>ACS Nano</i> , 2013 , 7, 1036-44	16.7	121
98	Ordered mesoporous carbon nanochannel reactors for high-performance Fischer-Tropsch synthesis. <i>Chemical Communications</i> , 2013 , 49, 5141-3	5.8	52
97	Preparation Method of Co3O4 Nanoparticles Using Ordered Mesoporous Carbons as a Template and Their Application for Fischer Tropsch Synthesis. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 1773-177	·કે ^{.8}	33
96	Ultra-low-cost route to mesocellular siliceous foam from steel slag and mesocellular carbon foam as catalyst support in fuel cell. <i>Microporous and Mesoporous Materials</i> , 2012 , 151, 450-456	5.3	10
95	Development of novel mesoporous CIIiO2BnO2 nanocomposites and their application to anode materials in lithium ion secondary batteries. <i>Microporous and Mesoporous Materials</i> , 2012 , 151, 172-179	5.3	26
94	Simple synthesis of platinum dendritic aggregates supported on conductive tungsten oxide nanowires as high-performance methanol oxidation electrocatalysts. <i>Chemistry - A European Journal</i> , 2012 , 18, 2797-801	4.8	8
93	Crystallinity-controlled titanium oxide-carbon nanocomposites with enhanced lithium storage performance. <i>ChemSusChem</i> , 2012 , 5, 2376-82	8.3	16
92	Magnetite/mesocellular carbon foam as a magnetically recoverable fenton catalyst for removal of phenol and arsenic. <i>Chemosphere</i> , 2012 , 89, 1230-7	8.4	68
91	Nano-graphite functionalized mesocellular carbon foam with enhanced intra-penetrating electrical percolation networks for high performance electrochemical energy storage electrode materials. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 5695-704	3.6	21
90	Soft-Template Simple Synthesis of Ordered Mesoporous Titanium Nitride-Carbon Nanocomposite for High Performance Dye-Sensitized Solar Cell Counter Electrodes. <i>Chemistry of Materials</i> , 2012 , 24, 1575-1582	9.6	98
89	A study of the palladium size effect on the direct synthesis of hydrogen peroxide from hydrogen and oxygen using highly uniform palladium nanoparticles supported on carbon. <i>Korean Journal of Chemical Engineering</i> , 2012 , 29, 1115-1118	2.8	12
88	An ordered nanocomposite of organic radical polymer and mesocellular carbon foam as cathode material in lithium ion batteries. <i>Journal of Materials Chemistry</i> , 2012 , 22, 1453-1458		42

87	Sorption of Pb(II) and Cu(II) onto multi-amine grafted mesoporous silica embedded with nano-magnetite: effects of steric factors. <i>Journal of Hazardous Materials</i> , 2012 , 239-240, 183-91	12.8	43
86	Highly Efficient Enzyme Immobilization and Stabilization within Meso-Structured Onion-Like Silica for Biodiesel Production. <i>Chemistry of Materials</i> , 2012 , 24, 924-929	9.6	64
85	Colorimetric quantification of galactose using a nanostructured multi-catalyst system entrapping galactose oxidase and magnetic nanoparticles as peroxidase mimetics. <i>Analyst, The</i> , 2012 , 137, 1137-43	5	44
84	Immobilization and stabilization of subtilisin Carlsberg in magnetically-separable mesoporous silica for transesterification in an organic solvent. <i>Green Chemistry</i> , 2012 , 14, 1884	10	28
83	One-pot synthesis of intermetallic electrocatalysts in ordered, large-pore mesoporous carbon/silica toward formic acid oxidation. <i>ACS Nano</i> , 2012 , 6, 6870-81	16.7	85
82	A convenient alcohol sensor using one-pot nanocomposite entrapping alcohol oxidase and magnetic nanoparticles as peroxidase mimetics. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 5914-9	1.3	19
81	Ordered mesoporous Zn-doped SnO2 synthesized by exotemplating for efficient dye-sensitized solar cells. <i>Energy and Environmental Science</i> , 2011 , 4, 2529	35.4	68
80	A novel mesoporous carbon-silica-titania nanocomposite as a high performance anode material in lithium ion batteries. <i>Chemical Communications</i> , 2011 , 47, 4944-6	5.8	37
79	Gravimetric analysis of the adsorption and desorption of CO2 on amine-functionalized mesoporous silica mounted on a microcantilever array. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	41
78	Highly Efficient and Durable Quantum Dot Sensitized ZnO Nanowire Solar Cell Using Noble-Metal-Free Counter Electrode. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 22018-22024	3.8	96
77	Development of high-performance supercapacitor electrodes using novel ordered mesoporous tungsten oxide materials with high electrical conductivity. <i>Chemical Communications</i> , 2011 , 47, 1021-3	5.8	178
76	Investigation of Pseudocapacitive Charge-Storage Behavior in Highly Conductive Ordered Mesoporous Tungsten Oxide Electrodes. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 11880-11886	3.8	91
75	Magnetic mesoporous materials for removal of environmental wastes. <i>Journal of Hazardous Materials</i> , 2011 , 192, 1140-7	12.8	71
74	Easy access to highly crystalline mesoporous transition-metal oxides with controllable uniform large pores by using block copolymers synthesized via atom transfer radical polymerization. Microporous and Mesoporous Materials, 2011, 143, 149-156	5.3	28
73	Direct Access to Mesoporous Crystalline TiO2/Carbon Composites with Large and Uniform Pores for Use as Anode Materials in Lithium Ion Batteries. <i>Macromolecular Chemistry and Physics</i> , 2011 , 212, 383-390	2.6	37
72	Fe3O4 Nanoparticles Confined in Mesocellular Carbon Foam for High Performance Anode Materials for Lithium-Ion Batteries. <i>Advanced Functional Materials</i> , 2011 , 21, 2430-2438	15.6	370
71	A Highly Efficient Electrochemical Biosensing Platform by Employing Conductive Nanocomposite Entrapping Magnetic Nanoparticles and Oxidase in Mesoporous Carbon Foam. <i>Advanced Functional Materials</i> , 2011 , 21, 2868-2875	15.6	72
70	Highly Improved Rate Capability for a Lithium-Ion Battery Nano-Li4Ti5O12 Negative Electrode via Carbon-Coated Mesoporous Uniform Pores with a Simple Self-Assembly Method. <i>Advanced Eunctional Materials</i> 2011 21 4349-4357	15.6	241

69	Fabrication of nanoporous nanocomposites entrapping Fe3O4 magnetic nanoparticles and oxidases for colorimetric biosensing. <i>Chemistry - A European Journal</i> , 2011 , 17, 10700-7	4.8	105
68	Development of a high-performance anode for lithium ion batteries using novel ordered mesoporous tungsten oxide materials with high electrical conductivity. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 11060-6	3.6	125
67	Rapid (~10 min) synthesis of single-crystalline, nanorice TiO2 mesoparticles with a high photovoltaic efficiency of above 8%. <i>Chemical Communications</i> , 2011 , 47, 8572-4	5.8	19
66	Easy access to efficient magnetically recyclable separation of histidine-tagged proteins using superparamagnetic nickel ferrite nanoparticle clusters. <i>Journal of Materials Chemistry</i> , 2011 , 21, 6713		30
65	Block copolymer directed one-pot simple synthesis of L10-phase FePt nanoparticles inside ordered mesoporous aluminosilicate/carbon composites. <i>ACS Nano</i> , 2011 , 5, 1018-25	16.7	46
64	Well-dispersed Pd3Pt1 alloy nanoparticles in large pore sized mesocellular carbon foam for improved methanol-tolerant oxygen reduction reaction. <i>Carbon</i> , 2011 , 49, 1108-1117	10.4	45
63	Robust mesocellular carbon foam counter electrode for quantum-dot sensitized solar cells. <i>Electrochemistry Communications</i> , 2011 , 13, 34-37	5.1	57
62	Photocatalytic hydroxylation of benzene to phenol over titanium oxide entrapped into hydrophobically modified siliceous foam. <i>Applied Catalysis B: Environmental</i> , 2011 , 102, 132-139	21.8	47
61	Ordered Mesoporous SnO2 B ased Photoanodes for High-Performance Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010 , 114, 22032-22037	3.8	163
60	Ordered mesoporous WO3½ possessing electronically conductive framework comparable to carbon framework toward long-term stable cathode supports for fuel cells. <i>Journal of Materials Chemistry</i> , 2010 , 20, 7416		68
59	Enhanced photocatalytic activity of highly crystallized and ordered mesoporous titanium oxide measured by silicon resonators. <i>Analytical Chemistry</i> , 2010 , 82, 3032-7	7.8	21
58	Determination of Adsorption Isotherms of Overpotentially Deposited Hydrogen on Platinum and Iridium in KOH Aqueous Solution Using the Phase-Shift Method and Correlation Constants. <i>Journal of Chemical & Description Constants</i> (2010), 55, 2363-2372	2.8	6
57	Large-pore sized mesoporous carbon electrocatalyst for efficient dye-sensitized solar cells. <i>Chemical Communications</i> , 2010 , 46, 2136-8	5.8	99
56	Monolithic route to efficient dye-sensitized solar cells employing diblock copolymers for mesoporous TiO2. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1261-1268		40
55	Ordered mesoporous silica nanoparticles with and without embedded iron oxide nanoparticles: structure evolution during synthesis. <i>Journal of Materials Chemistry</i> , 2010 , 20, 7807		65
54	Platinum-free tungsten carbides as an efficient counter electrode for dye sensitized solar cells. <i>Chemical Communications</i> , 2010 , 46, 8600-2	5.8	198
53	Nanoscale enzyme reactors in mesoporous carbon for improved performance and lifetime of biosensors and biofuel cells. <i>Biosensors and Bioelectronics</i> , 2010 , 26, 655-60	11.8	42
52	A simple method for producing mesoporous anatase TiO2 nanocrystals with elevated photovoltaic performance. <i>Scripta Materialia</i> , 2010 , 62, 223-226	5.6	26

(2007-2010)

51	Various Synthetic Methods for One-Dimensional Semiconductor Nanowires/Nanorods and Their Applications in Photovoltaic Devices. <i>European Journal of Inorganic Chemistry</i> , 2010 , 2010, 4251-4263	2.3	31
50	Ferrocene-derivatized ordered mesoporous carbon as high performance counter electrodes for dye-sensitized solar cells. <i>Carbon</i> , 2010 , 48, 3715-3720	10.4	84
49	Soft-template synthesized ordered mesoporous carbon counter electrodes for dye-sensitized solar cells. <i>Carbon</i> , 2010 , 48, 4563-4565	10.4	53
48	Multiplexed immunoassay using the stabilized enzymes in mesoporous silica. <i>Biosensors and Bioelectronics</i> , 2009 , 25, 906-12	11.8	35
47	Degradation mechanism of electrocatalyst during long-term operation of PEMFC. <i>International Journal of Hydrogen Energy</i> , 2009 , 34, 8974-8981	6.7	86
46	Block copolymer directed synthesis of mesoporous TiO2 for dye-sensitized solar cells. <i>Soft Matter</i> , 2009 , 5, 134-139	3.6	104
45	Magnetically-separable and highly-stable enzyme system based on crosslinked enzyme aggregates shipped in magnetite-coated mesoporous silica. <i>Journal of Materials Chemistry</i> , 2009 , 19, 7864		43
44	Nanostructured carbon-crystalline titania composites from microphase separation of poly(ethylene oxide-b-acrylonitrile) and titania sols. <i>Chemical Communications</i> , 2009 , 2532-4	5.8	28
43	Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. <i>Nature Materials</i> , 2008 , 7, 222-8	27	527
42	Synthesis and characterization of magnetically active carbon nanofiber/iron oxide composites with hierarchical pore structures. <i>Nanotechnology</i> , 2008 , 19, 455612	3.4	37
41	Highly crystalline inverse opal transition metal oxides via a combined assembly of soft and hard chemistries. <i>Journal of the American Chemical Society</i> , 2008 , 130, 8882-3	16.4	74
40	Highly Sensitive and Magnetically Switchable Biosensors Using Ordered Mesoporous Carbons. <i>ACS Symposium Series</i> , 2008 , 234-242	0.4	4
39	Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts. <i>Small</i> , 2008 , 4, 143-52	11	338
38	Controlling nanoparticle location via confined assembly in electrospun block copolymer nanofibers. <i>Small</i> , 2008 , 4, 2067-73	11	72
37	One-dimensional crosslinked enzyme aggregates in SBA-15: Superior catalytic behavior to conventional enzyme immobilization. <i>Microporous and Mesoporous Materials</i> , 2008 , 111, 18-23	5.3	65
36	Crosslinked enzyme aggregates in hierarchically-ordered mesoporous silica: a simple and effective method for enzyme stabilization. <i>Biotechnology and Bioengineering</i> , 2007 , 96, 210-8	4.9	173
35	Inter-particle and interfacial interaction of magnetic nanoparticles. <i>Journal of Magnetism and Magnetic Materials</i> , 2007 , 310, e806-e808	2.8	12
34	Experimental studies of strong dipolar interparticle interaction in monodisperse Fe3O4 nanoparticles. <i>Applied Physics Letters</i> , 2007 , 91, 102502	3.4	53

33	Generalized fabrication of multifunctional nanoparticle assemblies on silica spheres. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 4789-93	16.4	215
32	Generalized Fabrication of Multifunctional Nanoparticle Assemblies on Silica Spheres. <i>Angewandte Chemie</i> , 2006 , 118, 4907-4911	3.6	59
31	Recent Progress in the Synthesis of Porous Carbon Materials. <i>Advanced Materials</i> , 2006 , 18, 2073-2094	24	1748
30	Filtration-Free Recyclable Catalytic Asymmetric Dihydroxylation Using a Ligand Immobilized on Magnetic Mesocellular Mesoporous Silica. <i>Advanced Synthesis and Catalysis</i> , 2006 , 348, 41-46	5.6	117
29	Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. <i>Journal of the American Chemical Society</i> , 2006 , 128, 688-9	16.4	797
28	Synthesis of new nanostructured carbon materials using silica nanostructured templates by Korean research groups. <i>International Journal of Nanotechnology</i> , 2006 , 3, 253	1.5	7
27	Highly active heterogeneous Fenton catalyst using iron oxide nanoparticles immobilized in alumina coated mesoporous silica. <i>Chemical Communications</i> , 2006 , 463-5	5.8	163
26	Large-scale synthesis of TiO2 nanorods via nonhydrolytic sol-gel ester elimination reaction and their application to photocatalytic inactivation of E. coli. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 1529	9 7 -4302	349
25	Simple synthesis of mesoporous carbon with magnetic nanoparticles embedded in carbon rods. <i>Carbon</i> , 2005 , 43, 2536-2543	10.4	105
24	Preparation of a magnetically switchable bio-electrocatalytic system employing cross-linked enzyme aggregates in magnetic mesocellular carbon foam. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 7427-32	16.4	128
23	Preparation of a Magnetically Switchable Bio-electrocatalytic System Employing Cross-linked Enzyme Aggregates in Magnetic Mesocellular Carbon Foam. <i>Angewandte Chemie</i> , 2005 , 117, 7593-7598	3.6	24
22	Large-Scale Synthesis of Uniform and Crystalline Magnetite Nanoparticles Using Reverse Micelles as Nanoreactors under Reflux Conditions. <i>Advanced Functional Materials</i> , 2005 , 15, 503-509	15.6	365
21	Simple Fabrication of a Highly Sensitive and Fast Glucose Biosensor Using Enzymes Immobilized in Mesocellular Carbon Foam. <i>Advanced Materials</i> , 2005 , 17, 2828-2833	24	186
20	Simple synthesis of hierarchically ordered mesocellular mesoporous silica materials hosting crosslinked enzyme aggregates. <i>Small</i> , 2005 , 1, 744-53	11	179
19	A magnetically separable, highly stable enzyme system based on nanocomposites of enzymes and magnetic nanoparticles shipped in hierarchically ordered, mesocellular, mesoporous silica. <i>Small</i> , 2005 , 1, 1203-7	11	99
18	Bismuth Sulfonate Immobilized on Silica Gel for Allylation of Aldehydes and Synthesis of Homoallylic Amines. <i>Catalysis Letters</i> , 2004 , 96, 201-204	2.8	17
17	Direct synthesis of uniform mesoporous carbons from the carbonization of as-synthesized silica/triblock copolymer nanocomposites. <i>Carbon</i> , 2004 , 42, 2711-2719	10.4	116
16	Heterogeneous asymmetric nitro-Mannich reaction using a bis(oxazoline) ligand grafted on mesoporous silica. <i>Tetrahedron: Asymmetry</i> , 2004 , 15, 2595-2598		58

LIST OF PUBLICATIONS

15	Mesocellular polymer foams with unprecedented uniform large mesopores and high surface areas. <i>Chemical Communications</i> , 2004 , 562-3	5.8	18
14	Simple Synthesis of Uniform Mesoporous Carbons with Diverse Structures from Mesostructured Polymer/Silica Nanocomposites. <i>Chemistry of Materials</i> , 2004 , 16, 3323-3330	9.6	89
13	Synthesis of new nanoporous carbon materials using nanostructured silica materials as templates. Journal of Materials Chemistry, 2004 , 14, 478		366
12	Optical absorption and photoluminescence properties of the PPV nanotubes and nanowires. <i>Macromolecular Symposia</i> , 2003 , 201, 119-126	0.8	6
11	A facile synthesis of bimodal mesoporous silica and its replication for bimodal mesoporous carbon. <i>Chemical Communications</i> , 2003 , 1138-9	5.8	95
10	Low-cost and facile synthesis of mesocellular carbon foams. Chemical Communications, 2002, 2674-5	5.8	74
9	Fabrication of a novel polypyrrole/poly(methyl methacrylate) coaxial nanocable using mesoporous silica as a nanoreactor. <i>Chemical Communications</i> , 2001 , 83-84	5.8	106
8	Fabrication of novel mesocellular carbon foams with uniform ultralarge mesopores. <i>Journal of the American Chemical Society</i> , 2001 , 123, 5146-7	16.4	249
7	Development of a New Mesoporous Carbon Using an HMS Aluminosilicate Template. <i>Advanced Materials</i> , 2000 , 12, 359-362	24	333
6	Electric Double-Layer Capacitor Performance of a New Mesoporous Carbon. <i>Journal of the Electrochemical Society</i> , 2000 , 147, 2507	3.9	368
5	Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors. <i>Chemical Communications</i> , 1999 , 2177-2178	5.8	659
4	Synthesis of Novel Mesoporous Carbons and Their Applications to Electrochemical Double-Layer Capacitors. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 593, 193		1
3	Engineered Nanoenzymes with Multifunctional Properties for Next-Generation Biological and Environmental Applications. <i>Advanced Functional Materials</i> ,2108650	15.6	5
2	Effect of Support for Non-Noble NiMo Electrocatalyst in Alkaline Hydrogen Oxidation. <i>Advanced Sustainable Systems</i> ,2100226	5.9	1
1	Rational Development of Co-Doped Mesoporous Ceria with High Peroxidase-Mimicking Activity at Neutral pH for Paper-Based Colorimetric Detection of Multiple Biomarkers. <i>Advanced Functional Materials</i> ,2112428	15.6	2