List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/644474/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent Progress in the Synthesis of Porous Carbon Materials. Advanced Materials, 2006, 18, 2073-2094.	11.1	1,917
2	Magnetic Fluorescent Delivery Vehicle Using Uniform Mesoporous Silica Spheres Embedded with Monodisperse Magnetic and Semiconductor Nanocrystals. Journal of the American Chemical Society, 2006, 128, 688-689.	6.6	834
3	Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors. Chemical Communications, 1999, , 2177-2178.	2.2	716
4	Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. Nature Materials, 2008, 7, 222-228.	13.3	571
5	Versatile Strategy for Tuning ORR Activity of a Single Fe-N ₄ Site by Controlling Electron-Withdrawing/Donating Properties of a Carbon Plane. Journal of the American Chemical Society, 2019, 141, 6254-6262.	6.6	509
6	Facile Synthesis of Nb ₂ O ₅ @Carbon Core–Shell Nanocrystals with Controlled Crystalline Structure for High-Power Anodes in Hybrid Supercapacitors. ACS Nano, 2015, 9, 7497-7505.	7.3	411
7	Electric Double-Layer Capacitor Performance of a New Mesoporous Carbon. Journal of the Electrochemical Society, 2000, 147, 2507.	1.3	405
8	Fe ₃ O ₄ Nanoparticles Confined in Mesocellular Carbon Foam for High Performance Anode Materials for Lithiumâ€ion Batteries. Advanced Functional Materials, 2011, 21, 2430-2438.	7.8	403
9	Large-Scale Synthesis of Uniform and Crystalline Magnetite Nanoparticles Using Reverse Micelles as Nanoreactors under Reflux Conditions. Advanced Functional Materials, 2005, 15, 503-509.	7.8	393
10	Development of a New Mesoporous Carbon Using an HMS Aluminosilicate Template. Advanced Materials, 2000, 12, 359-362.	11.1	385
11	Advanced Hybrid Supercapacitor Based on a Mesoporous Niobium Pentoxide/Carbon as High-Performance Anode. ACS Nano, 2014, 8, 8968-8978.	7.3	380
12	Synthesis of new nanoporous carbon materials using nanostructured silica materials as templates. Journal of Materials Chemistry, 2004, 14, 478.	6.7	379
13	Large-Scale Synthesis of TiO2Nanorods via Nonhydrolytic Solâ^Gel Ester Elimination Reaction and Their Application to Photocatalytic Inactivation ofE.coli. Journal of Physical Chemistry B, 2005, 109, 15297-15302.	1.2	379
14	A Comprehensive Review of Materials with Catalytic Effects in Li–S Batteries: Enhanced Redox Kinetics. Angewandte Chemie - International Edition, 2019, 58, 18746-18757.	7.2	379
15	Highâ€Performance Sodiumâ€Ion Hybrid Supercapacitor Based on Nb ₂ O ₅ @Carbon Core–Shell Nanoparticles and Reduced Graphene Oxide Nanocomposites. Advanced Functional Materials, 2016, 26, 3711-3719.	7.8	363
16	Simple Synthesis of Functionalized Superparamagnetic Magnetite/Silica Core/Shell Nanoparticles and their Application as Magnetically Separable Highâ€Performance Biocatalysts. Small, 2008, 4, 143-152.	5.2	351
17	Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nature Communications, 2019, 10, 940.	5.8	349
18	Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation. ACS Applied Materials & Interfaces, 2015, 7, 17330-17336.	4.0	302

#	Article	IF	CITATIONS
19	Fabrication of Novel Mesocellular Carbon Foams with Uniform Ultralarge Mesopores. Journal of the American Chemical Society, 2001, 123, 5146-5147.	6.6	276
20	Investigation of the Support Effect in Atomically Dispersed Pt on WO _{3â^'<i>x</i>} for Utilization of Pt in the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 16038-16042.	7.2	271
21	Highly Improved Rate Capability for a Lithium-Ion Battery Nano-Li4Ti5O12 Negative Electrode via Carbon-Coated Mesoporous Uniform Pores with a Simple Self-Assembly Method. Advanced Functional Materials, 2011, 21, 4349-4357.	7.8	263
22	Generalized Fabrication of Multifunctional Nanoparticle Assemblies on Silica Spheres. Angewandte Chemie - International Edition, 2006, 45, 4789-4793.	7.2	227
23	Platinum-free tungsten carbides as an efficient counter electrode for dye sensitized solar cells. Chemical Communications, 2010, 46, 8600.	2.2	215
24	Simple Fabrication of a Highly Sensitive and Fast Glucose Biosensor Using Enzymes Immobilized in Mesocellular Carbon Foam. Advanced Materials, 2005, 17, 2828-2833.	11.1	202
25	Development of high-performance supercapacitor electrodes using novel ordered mesoporous tungsten oxide materials with high electrical conductivity. Chemical Communications, 2011, 47, 1021-1023.	2.2	197
26	Inorganic Rubidium Cation as an Enhancer for Photovoltaic Performance and Moisture Stability of HC(NH ₂) ₂ PbI ₃ Perovskite Solar Cells. Advanced Functional Materials, 2017, 27, 1605988.	7.8	194
27	A mini review of designed mesoporous materials for energy-storage applications: from electric double-layer capacitors to hybrid supercapacitors. Nanoscale, 2016, 8, 7827-7833.	2.8	192
28	Crosslinked enzyme aggregates in hierarchically-ordered mesoporous silica: A simple and effective method for enzyme stabilization. Biotechnology and Bioengineering, 2007, 96, 210-218.	1.7	187
29	Simple Synthesis of Hierarchically Ordered Mesocellular Mesoporous Silica Materials Hosting Crosslinked Enzyme Aggregates. Small, 2005, 1, 744-753.	5.2	184
30	Highly active heterogeneous Fenton catalyst using iron oxide nanoparticles immobilized in alumina coated mesoporous silica. Chemical Communications, 2006, , 463-465.	2.2	180
31	Ordered Mesoporous SnO ₂ â^Based Photoanodes for High-Performance Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 22032-22037.	1.5	174
32	Heme Cofactorâ€Resembling Fe–N Single Site Embedded Graphene as Nanozymes to Selectively Detect H ₂ O ₂ with High Sensitivity. Advanced Functional Materials, 2020, 30, 1905410.	7.8	171
33	Cu-Pd alloy nanoparticles as highly selective catalysts for efficient electrochemical reduction of CO2 to CO. Applied Catalysis B: Environmental, 2019, 246, 82-88.	10.8	167
34	Mesoporous Ge/GeO ₂ /Carbon Lithium-Ion Battery Anodes with High Capacity and High Reversibility. ACS Nano, 2015, 9, 5299-5309.	7.3	159
35	Approaching Ultrastable Highâ€Rate Li–S Batteries through Hierarchically Porous Titanium Nitride Synthesized by Multiscale Phase Separation. Advanced Materials, 2019, 31, e1806547.	11.1	155
36	Block Copolymer Directed Ordered Mesostructured TiNb ₂ O ₇ Multimetallic Oxide Constructed of Nanocrystals as High Power Li-Ion Battery Anodes. Chemistry of Materials, 2014, 26, 3508-3514.	3.2	154

#	Article	IF	CITATIONS
37	N- and B-Codoped Graphene: A Strong Candidate To Replace Natural Peroxidase in Sensitive and Selective Bioassays. ACS Nano, 2019, 13, 4312-4321.	7.3	153
38	Selective CO production by Au coupled ZnTe/ZnO in the photoelectrochemical CO ₂ reduction system. Energy and Environmental Science, 2015, 8, 3597-3604.	15.6	152
39	Blockâ€Copolymerâ€Assisted Oneâ€Pot Synthesis of Ordered Mesoporous WO _{3â~`<i>x</i>} /Carbon Nanocomposites as Highâ€Rateâ€Performance Electrodes for Pseudocapacitors. Advanced Functional Materials, 2013, 23, 3747-3754.	7.8	145
40	Development of a high-performance anode for lithium ion batteries using novel ordered mesoporous tungsten oxide materials with high electrical conductivity. Physical Chemistry Chemical Physics, 2011, 13, 11060.	1.3	141
41	Preparation of a Magnetically Switchable Bio-electrocatalytic System Employing Cross-linked Enzyme Aggregates in Magnetic Mesocellular Carbon Foam. Angewandte Chemie - International Edition, 2005, 44, 7427-7432.	7.2	137
42	Direct synthesis of uniform mesoporous carbons from the carbonization of as-synthesized silica/triblock copolymer nanocomposites. Carbon, 2004, 42, 2711-2719.	5.4	134
43	Mechanically Recoverable and Highly Efficient Perovskite Solar Cells: Investigation of Intrinsic Flexibility of Organic–Inorganic Perovskite. Advanced Energy Materials, 2015, 5, 1501406.	10.2	131
44	Filtration-Free Recyclable Catalytic Asymmetric Dihydroxylation Using a Ligand Immobilized on Magnetic Mesocellular Mesoporous Silica. Advanced Synthesis and Catalysis, 2006, 348, 41-46.	2.1	130
45	One-Pot Synthesis of Tin-Embedded Carbon/Silica Nanocomposites for Anode Materials in Lithium-Ion Batteries. ACS Nano, 2013, 7, 1036-1044.	7.3	130
46	Unbiased Sunlight-Driven Artificial Photosynthesis of Carbon Monoxide from CO ₂ Using a ZnTe-Based Photocathode and a Perovskite Solar Cell in Tandem. ACS Nano, 2016, 10, 6980-6987.	7.3	128
47	Ordered Mesoporous Titanium Nitride as a Promising Carbon-Free Cathode for Aprotic Lithium-Oxygen Batteries. ACS Nano, 2017, 11, 1736-1746.	7.3	128
48	Structural Design of Amorphous CoMoP <i>_x</i> with Abundant Active Sites and Synergistic Catalysis Effect for Effective Water Splitting. Advanced Functional Materials, 2020, 30, 2003889.	7.8	128
49	Ordered-mesoporous Nb2O5/carbon composite as a sodium insertion material. Nano Energy, 2015, 16, 62-70.	8.2	124
50	Designing a Highly Active Metalâ€Free Oxygen Reduction Catalyst in Membrane Electrode Assemblies for Alkaline Fuel Cells: Effects of Pore Size and Dopingâ€6ite Position. Angewandte Chemie - International Edition, 2015, 54, 9230-9234.	7.2	118
51	General Synthesis of N-Doped Macroporous Graphene-Encapsulated Mesoporous Metal Oxides and Their Application as New Anode Materials for Sodium-Ion Hybrid Supercapacitors. Advanced Functional Materials, 2017, 27, 1603921.	7.8	118
52	A tailored TiO2 electron selective layer for high-performance flexible perovskite solar cells via low temperature UV process. Nano Energy, 2016, 28, 380-389.	8.2	116
53	Soft-template synthesis of mesoporous non-precious metal catalyst with Fe-N x /C active sites for oxygen reduction reaction in fuel cells. Applied Catalysis B: Environmental, 2018, 222, 191-199.	10.8	115
54	Polymer Interfacial Self-Assembly Guided Two-Dimensional Engineering of Hierarchically Porous Carbon Nanosheets. Journal of the American Chemical Society, 2020, 142, 9250-9257.	6.6	115

#	Article	IF	CITATIONS
55	Fabrication of Nanoporous Nanocomposites Entrapping Fe 3 O 4 Magnetic Nanoparticles and Oxidases for Colorimetric Biosensing. Chemistry - A European Journal, 2011, 17, 10700-10707.	1.7	114
56	Functional mesoporous materials for energy applications: solar cells, fuel cells, and batteries. Nanoscale, 2013, 5, 4584.	2.8	114
57	Fabrication of a novel polypyrrole/poly(methyl methacrylate) coaxial nanocable using mesoporous silica as a nanoreactor. Chemical Communications, 2001, , 83-84.	2.2	113
58	Carbonate-coordinated cobalt co-catalyzed BiVO4/WO3 composite photoanode tailored for CO2 reduction to fuels. Nano Energy, 2015, 15, 153-163.	8.2	113
59	Pt-Decorated Magnetic Nanozymes for Facile and Sensitive Point-of-Care Bioassay. ACS Applied Materials & Interfaces, 2017, 9, 35133-35140.	4.0	113
60	Soft-Template Simple Synthesis of Ordered Mesoporous Titanium Nitride-Carbon Nanocomposite for High Performance Dye-Sensitized Solar Cell Counter Electrodes. Chemistry of Materials, 2012, 24, 1575-1582.	3.2	112
61	Direct Access to Hierarchically Porous Inorganic Oxide Materials with Three-Dimensionally Interconnected Networks. Journal of the American Chemical Society, 2014, 136, 16066-16072.	6.6	111
62	Simple synthesis of mesoporous carbon with magnetic nanoparticles embedded in carbon rods. Carbon, 2005, 43, 2536-2543.	5.4	109
63	Large-pore sized mesoporous carbon electrocatalyst for efficient dye-sensitized solar cells. Chemical Communications, 2010, 46, 2136.	2.2	109
64	Block copolymer directed synthesis of mesoporous TiO2for dye-sensitized solar cells. Soft Matter, 2009, 5, 134-139.	1.2	108
65	A Magnetically Separable, Highly Stable Enzyme System Based on Nanocomposites of Enzymes and Magnetic Nanoparticles Shipped in Hierarchically Ordered, Mesocellular, Mesoporous Silica. Small, 2005, 1, 1203-1207.	5.2	106
66	Improvement of desolvation and resilience of alginate binders for Si-based anodes in a lithium ion battery by calcium-mediated cross-linking. Physical Chemistry Chemical Physics, 2014, 16, 25628-25635.	1.3	106
67	Rational Design of TiC-Supported Single-Atom Electrocatalysts for Hydrogen Evolution and Selective Oxygen Reduction Reactions. ACS Energy Letters, 2019, 4, 126-132.	8.8	104
68	Highly efficient colorimetric detection of target cancer cells utilizing superior catalytic activity of graphene oxide–magnetic-platinum nanohybrids. Nanoscale, 2014, 6, 1529-1536.	2.8	103
69	Degradation mechanism of electrocatalyst during long-term operation of PEMFC. International Journal of Hydrogen Energy, 2009, 34, 8974-8981.	3.8	102
70	A facile synthesis of bimodal mesoporous silica and its replication for bimodal mesoporous carbonElectronic supplementary information (ESI) available: experimental procedure and Figs. S1–S4. See http://www.rsc.org/suppdata/cc/b3/b301535a/. Chemical Communications, 2003, , 1138-1139.	2.2	100
71	Investigation of Pseudocapacitive Charge-Storage Behavior in Highly Conductive Ordered Mesoporous Tungsten Oxide Electrodes. Journal of Physical Chemistry C, 2011, 115, 11880-11886.	1.5	100
72	Synergistic Effect of Molecular-Type Electrocatalysts with Ultrahigh Pore Volume Carbon Microspheres for Lithium–Sulfur Batteries. ACS Nano, 2018, 12, 6013-6022.	7.3	100

#	Article	IF	CITATIONS
73	Highly Efficient and Durable Quantum Dot Sensitized ZnO Nanowire Solar Cell Using Noble-Metal-Free Counter Electrode. Journal of Physical Chemistry C, 2011, 115, 22018-22024.	1.5	99
74	One-Pot Synthesis of Intermetallic Electrocatalysts in Ordered, Large-Pore Mesoporous Carbon/Silica toward Formic Acid Oxidation. ACS Nano, 2012, 6, 6870-6881.	7.3	98
75	TiO2 nanodisks designed for Li-ion batteries: a novel strategy for obtaining an ultrathin and high surface area anode material at the ice interface. Energy and Environmental Science, 2013, 6, 2932.	15.6	97
76	Awakening Solar Waterâ€Splitting Activity of ZnFe ₂ O ₄ Nanorods by Hybrid Microwave Annealing. Advanced Energy Materials, 2015, 5, 1401933.	10.2	95
77	Simple Synthesis of Uniform Mesoporous Carbons with Diverse Structures from Mesostructured Polymer/Silica Nanocomposites. Chemistry of Materials, 2004, 16, 3323-3330.	3.2	94
78	Simple synthesis of hierarchically structured partially graphitized carbon by emulsion/block-copolymer co-template method for high power supercapacitors. Carbon, 2013, 64, 391-402.	5.4	94
79	Ferrocene-derivatized ordered mesoporous carbon as high performance counter electrodes for dye-sensitized solar cells. Carbon, 2010, 48, 3715-3720.	5.4	92
80	A Comprehensive Review of Materials with Catalytic Effects in Li–S Batteries: Enhanced Redox Kinetics. Angewandte Chemie, 2019, 131, 18920-18931.	1.6	90
81	Selective charge transfer to dioxygen on KPF6-modified carbon nitride for photocatalytic synthesis of H2O2 under visible light. Journal of Catalysis, 2018, 357, 51-58.	3.1	89
82	Spontaneous Generation of H ₂ O ₂ and Hydroxyl Radical through O ₂ Reduction on Copper Phosphide under Ambient Aqueous Condition. Environmental Science & Technology, 2019, 53, 2918-2925.	4.6	88
83	Simple fabrication of flexible electrodes with high metal-oxide content: electrospun reduced tungsten oxide/carbon nanofibers for lithium ion battery applications. Nanoscale, 2014, 6, 10147-10155.	2.8	82
84	Ultrafast synthesis of MoS2 or WS2-reduced graphene oxide composites via hybrid microwave annealing for anode materials of lithium ion batteries. Journal of Power Sources, 2015, 295, 228-234.	4.0	82
85	Programmed Nanoparticleâ€Loaded Nanoparticles for Deepâ€Penetrating 3D Cancer Therapy. Advanced Materials, 2018, 30, e1707557.	11.1	82
86	Low-cost and facile synthesis of mesocellular carbon foams. Chemical Communications, 2002, , 2674-2675.	2.2	81
87	Interaction Mediator Assisted Synthesis of Mesoporous Molybdenum Carbide: Mo-Valence State Adjustment for Optimizing Hydrogen Evolution. ACS Nano, 2020, 14, 4988-4999.	7.3	80
88	Highly Crystalline Inverse Opal Transition Metal Oxides via a Combined Assembly of Soft and Hard Chemistries. Journal of the American Chemical Society, 2008, 130, 8882-8883.	6.6	79
89	Low-cost electrospun WC/C composite nanofiber as a powerful platinum-free counter electrode for dye sensitized solar cell. Nano Energy, 2014, 9, 392-400.	8.2	79
90	Selective electrocatalysis imparted by metal–insulator transition for durability enhancement of automotive fuel cells. Nature Catalysis, 2020, 3, 639-648.	16.1	79

#	Article	IF	CITATIONS
91	Magnetic mesoporous materials for removal of environmental wastes. Journal of Hazardous Materials, 2011, 192, 1140-1147.	6.5	78
92	Ordered mesoporous WO3â^'X possessing electronically conductive framework comparable to carbon framework toward long-term stable cathode supports for fuel cells. Journal of Materials Chemistry, 2010, 20, 7416.	6.7	77
93	Magnetite/mesocellular carbon foam as a magnetically recoverable fenton catalyst for removal of phenol and arsenic. Chemosphere, 2012, 89, 1230-1237.	4.2	76
94	How g-C ₃ N ₄ Works and Is Different from TiO ₂ as an Environmental Photocatalyst: Mechanistic View. Environmental Science & Technology, 2020, 54, 497-506.	4.6	76
95	Controlling Nanoparticle Location via Confined Assembly in Electrospun Block Copolymer Nanofibers. Small, 2008, 4, 2067-2073.	5.2	75
96	A Highly Efficient Electrochemical Biosensing Platform by Employing Conductive Nanocomposite Entrapping Magnetic Nanoparticles and Oxidase in Mesoporous Carbon Foam. Advanced Functional Materials, 2011, 21, 2868-2875.	7.8	75
97	Reverse Micelle Synthesis of Colloidal Nickel–Manganese Layered Double Hydroxide Nanosheets and Their Pseudocapacitive Properties. Chemistry - A European Journal, 2014, 20, 14880-14884.	1.7	75
98	Ordered mesoporous silica nanoparticles with and without embedded iron oxide nanoparticles: structure evolution during synthesis. Journal of Materials Chemistry, 2010, 20, 7807.	6.7	74
99	Mesoporous tungsten oxynitride as electrocatalyst for promoting redox reactions of vanadium redox couple and performance of vanadium redox flow battery. Applied Surface Science, 2018, 429, 187-195.	3.1	74
100	Ordered mesoporous Zn-doped SnO2 synthesized by exotemplating for efficient dye-sensitized solar cells. Energy and Environmental Science, 2011, 4, 2529.	15.6	72
101	Highly Efficient Enzyme Immobilization and Stabilization within Meso-Structured Onion-Like Silica for Biodiesel Production. Chemistry of Materials, 2012, 24, 924-929.	3.2	70
102	Development of Highly Stable and Mass Transferâ€Enhanced Cathode Catalysts: Supportâ€Free Electrospun Intermetallic FePt Nanotubes for Polymer Electrolyte Membrane Fuel Cells. Advanced Energy Materials, 2015, 5, 1402093.	10.2	70
103	One-dimensional crosslinked enzyme aggregates in SBA-15: Superior catalytic behavior to conventional enzyme immobilization. Microporous and Mesoporous Materials, 2008, 111, 18-23.	2.2	69
104	Ordered Mesoporous Carbon Electrodes for Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2013, 5, 13426-13431.	4.0	69
105	Multiscale Phase Separations for Hierarchically Ordered Macro/Mesostructured Metal Oxides. Advanced Materials, 2018, 30, 1703829.	11.1	67
106	Water Splitting Exceeding 17% Solar-to-Hydrogen Conversion Efficiency Using Solution-Processed Ni-Based Electrocatalysts and Perovskite/Si Tandem Solar Cell. ACS Applied Materials & Interfaces, 2019, 11, 33835-33843.	4.0	67
107	Palladium oxide as a novel oxygen evolution catalyst on BiVO4 photoanode for photoelectrochemical water splitting. Journal of Catalysis, 2014, 317, 126-134.	3.1	65
108	Heterogeneous asymmetric nitro-Mannich reaction using a bis(oxazoline) ligand grafted on mesoporous silica. Tetrahedron: Asymmetry, 2004, 15, 2595-2598.	1.8	62

#	Article	IF	CITATIONS
109	Ammonium Fluoride Mediated Synthesis of Anhydrous Metal Fluoride–Mesoporous Carbon Nanocomposites for High-Performance Lithium Ion Battery Cathodes. ACS Applied Materials & Interfaces, 2016, 8, 35180-35190.	4.0	62
110	MoO ₂ nanocrystals interconnected on mesocellular carbon foam as a powerful catalyst for vanadium redox flow battery. RSC Advances, 2016, 6, 17574-17582.	1.7	62
111	Experimental studies of strong dipolar interparticle interaction in monodisperse Fe3O4 nanoparticles. Applied Physics Letters, 2007, 91, .	1.5	60
112	Soft-template synthesized ordered mesoporous carbon counter electrodes for dye-sensitized solar cells. Carbon, 2010, 48, 4563-4565.	5.4	60
113	Robust mesocellular carbon foam counter electrode for quantum-dot sensitized solar cells. Electrochemistry Communications, 2011, 13, 34-37.	2.3	60
114	Structural Effect on Electrochemical Performance of Ordered Porous Carbon Electrodes for Na-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 11748-11754.	4.0	60
115	Photocatalytic hydroxylation of benzene to phenol over titanium oxide entrapped into hydrophobically modified siliceous foam. Applied Catalysis B: Environmental, 2011, 102, 132-139.	10.8	59
116	A Highly Efficient Colorimetric Immunoassay Using a Nanocomposite Entrapping Magnetic and Platinum Nanoparticles in Ordered Mesoporous Carbon. Advanced Healthcare Materials, 2014, 3, 36-41.	3.9	58
117	Design of grain boundary enriched bimetallic borides for enhanced hydrogen evolution reaction. Chemical Engineering Journal, 2021, 405, 126977.	6.6	56
118	Gravimetric Analysis of the Adsorption and Desorption of CO ₂ on Amine-Functionalized Mesoporous Silica Mounted on a Microcantilever Array. Environmental Science & Technology, 2011, 45, 5704-5709.	4.6	55
119	Ordered mesoporous carbon nanochannel reactors for high-performance Fischer–Tropsch synthesis. Chemical Communications, 2013, 49, 5141.	2.2	54
120	Effective Antifouling Using Quorum-Quenching Acylase Stabilized in Magnetically-Separable Mesoporous Silica. Biomacromolecules, 2014, 15, 1153-1159.	2.6	54
121	Ostwald Ripening Driven Exfoliation to Ultrathin Layered Double Hydroxides Nanosheets for Enhanced Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2018, 10, 44518-44526.	4.0	53
122	Facile conversion of activated carbon to battery anode material using microwave graphitization. Carbon, 2016, 104, 106-111.	5.4	52
123	Ceneralized Access to Mesoporous Inorganic Particles and Hollow Spheres from Multicomponent Polymer Blends. Advanced Materials, 2018, 30, e1801127.	11.1	52
124	Colorimetric quantification of galactose using a nanostructured multi-catalyst system entrapping galactose oxidase and magnetic nanoparticles as peroxidase mimetics. Analyst, The, 2012, 137, 1137.	1.7	50
125	Well-dispersed Pd3Pt1 alloy nanoparticles in large pore sized mesocellular carbon foam for improved methanol-tolerant oxygen reduction reaction. Carbon, 2011, 49, 1108-1117.	5.4	49
126	Investigation of the Support Effect in Atomically Dispersed Pt on WO 3â^' x for Utilization of Pt in the Hydrogen Evolution Reaction. Angewandte Chemie, 2019, 131, 16184-16188.	1.6	49

#	Article	IF	CITATIONS
127	Structure engineering defective and mass transfer-enhanced RuO2 nanosheets for proton exchange membrane water electrolyzer. Nano Energy, 2021, 88, 106276.	8.2	49
128	Block Copolymer Directed One-Pot Simple Synthesis of L1 ₀ -Phase FePt Nanoparticles inside Ordered Mesoporous Aluminosilicate/Carbon Composites. ACS Nano, 2011, 5, 1018-1025.	7.3	48
129	Highly efficient perovskite solar cells based on mechanically durable molybdenum cathode. Nano Energy, 2015, 17, 131-139.	8.2	48
130	Vertically aligned nanostructured TiO ₂ photoelectrodes for high efficiency perovskite solar cells via a block copolymer template approach. Nanoscale, 2016, 8, 11472-11479.	2.8	48
131	Sorption of Pb(II) and Cu(II) onto multi-amine grafted mesoporous silica embedded with nano-magnetite: Effects of steric factors. Journal of Hazardous Materials, 2012, 239-240, 183-191.	6.5	47
132	Mesoporous carbon host material for stable lithium metal anode. Nanoscale, 2020, 12, 11818-11824.	2.8	47
133	An ordered nanocomposite of organic radicalpolymer and mesocellular carbon foam as cathode material in lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 1453-1458.	6.7	46
134	Polymer blend directed anisotropic self-assembly toward mesoporous inorganic bowls and nanosheets. Science Advances, 2020, 6, eabb3814.	4.7	46
135	Nanoscale enzyme reactors in mesoporous carbon for improved performance and lifetime of biosensors and biofuel cells. Biosensors and Bioelectronics, 2010, 26, 655-660.	5.3	45
136	A novel mesoporous carbon–silica–titania nanocomposite as a high performance anode material in lithium ion batteries. Chemical Communications, 2011, 47, 4944.	2.2	45
137	Magnetically-separable and highly-stable enzyme system based on crosslinked enzyme aggregates shipped in magnetite-coated mesoporous silica. Journal of Materials Chemistry, 2009, 19, 7864.	6.7	44
138	Simple and Sensitive Pointâ€ofâ€Care Bioassay System Based on Hierarchically Structured Enzymeâ€Mimetic Nanoparticles. Advanced Healthcare Materials, 2015, 4, 1311-1316.	3.9	44
139	Recent advances in non-precious group metal-based catalysts for water electrolysis and beyond. Journal of Materials Chemistry A, 2021, 10, 50-88.	5.2	44
140	A highly active and stable 3D dandelion spore-structured self-supporting Ir-based electrocatalyst for proton exchange membrane water electrolysis fabricated using structural reconstruction. Energy and Environmental Science, 2022, 15, 3449-3461.	15.6	44
141	A novel strategy to develop non-noble metal catalyst for CO2 electroreduction: Hybridization of metal-organic polymer. Applied Catalysis B: Environmental, 2018, 236, 154-161.	10.8	43
142	Engineered Nanoenzymes with Multifunctional Properties for Nextâ€Generation Biological and Environmental Applications. Advanced Functional Materials, 2022, 32, 2108650.	7.8	43
143	A review on recent approaches for designing the SEI layer on sodium metal anodes. Materials Advances, 2020, 1, 3143-3166.	2.6	42
144	Synthesis and characterization of magnetically active carbon nanofiber/iron oxide composites with hierarchical pore structures. Nanotechnology, 2008, 19, 455612.	1.3	41

#	Article	IF	CITATIONS
145	Effect of mesocelluar carbon foam electrode material on performance of vanadium redox flow battery. Journal of Power Sources, 2015, 278, 245-254.	4.0	41
146	Monolithic route to efficient dye-sensitized solar cells employing diblock copolymers for mesoporous TiO2. Journal of Materials Chemistry, 2010, 20, 1261-1268.	6.7	40
147	Direct Access to Mesoporous Crystalline TiO ₂ /Carbon Composites with Large and Uniform Pores for Use as Anode Materials in Lithium Ion Batteries. Macromolecular Chemistry and Physics, 2011, 212, 383-390.	1.1	40
148	Multiplexed immunoassay using the stabilized enzymes in mesoporous silica. Biosensors and Bioelectronics, 2009, 25, 906-912.	5.3	39
149	Metal-free cathodic catalyst with nitrogen- and phosphorus-doped ordered mesoporous carbon (NPOMC) for microbial fuel cells. Journal of Power Sources, 2020, 451, 227816.	4.0	39
150	Biomassâ€Derived P, N Selfâ€Doped Hard Carbon as Bifunctional Oxygen Electrocatalyst and Anode Material for Seawater Batteries. Advanced Functional Materials, 2021, 31, 2010882.	7.8	39
151	Rational Development of Coâ€Doped Mesoporous Ceria with High Peroxidaseâ€Mimicking Activity at Neutral pH for Paperâ€Based Colorimetric Detection of Multiple Biomarkers. Advanced Functional Materials, 2022, 32, .	7.8	39
152	Various Synthetic Methods for Oneâ€Dimensional Semiconductor Nanowires/Nanorods and Their Applications in Photovoltaic Devices. European Journal of Inorganic Chemistry, 2010, 2010, 4251-4263.	1.0	38
153	Immobilization and stabilization of subtilisin Carlsberg in magnetically-separable mesoporous silica for transesterification in an organic solvent. Green Chemistry, 2012, 14, 1884.	4.6	38
154	Activation of inert copper for significantly enhanced hydrogen evolution behaviors by trace ruthenium doping. Nano Energy, 2022, 92, 106763.	8.2	38
155	Solar Hydrogen Production from Zinc Telluride Photocathode Modified with Carbon and Molybdenum Sulfide. ACS Applied Materials & Interfaces, 2016, 8, 7748-7755.	4.0	37
156	Simple modification with amine- and hydroxyl- group rich biopolymer on ordered mesoporous carbon/sulfur composite for lithium-sulfur batteries. Korean Journal of Chemical Engineering, 2018, 35, 579-586.	1.2	37
157	A small-strain niobium nitride anode with ordered mesopores for ultra-stable potassium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 3119-3127.	5.2	36
158	Ni(OH) ₂ â€WP Hybrid Nanorod Arrays for Highly Efficient and Durable Hydrogen Evolution Reactions in Alkaline Media. ChemSusChem, 2018, 11, 3618-3624.	3.6	35
159	Rational design of Li ₃ VO ₄ @carbon core–shell nanoparticles as Li-ion hybrid supercapacitor anode materials. Journal of Materials Chemistry A, 2017, 5, 20969-20977.	5.2	34
160	Precipitation-Based Nanoscale Enzyme Reactor with Improved Loading, Stability, and Mass Transfer for Enzymatic CO ₂ Conversion and Utilization. ACS Catalysis, 2018, 8, 6526-6536.	5.5	34
161	Amorphous Tin Oxide Nanohelix Structure Based Electrode for Highly Reversible Na-Ion Batteries. ACS Nano, 2019, 13, 6513-6521.	7.3	34
162	Amorphous Cobalt Oxide Nanowalls as Catalyst and Protection Layers on n-Type Silicon for Efficient Photoelectrochemical Water Oxidation. ACS Catalysis, 2020, 10, 420-429.	5.5	34

#	Article	IF	CITATIONS
163	Simultaneous Suppression of Shuttle Effect and Lithium Dendrite Growth by Lightweight Bifunctional Separator for Li–S Batteries. ACS Applied Energy Materials, 2020, 3, 2643-2652.	2.5	34
164	Preparation Method of Co ₃ O ₄ Nanoparticles Using Ordered Mesoporous Carbons as a Template and Their Application for Fischer–Tropsch Synthesis. Journal of Physical Chemistry C, 2013, 117, 1773-1779.	1.5	33
165	Stabilized glycerol dehydrogenase for the conversion of glycerol to dihydroxyacetone. Chemical Engineering Journal, 2015, 276, 283-288.	6.6	33
166	Enzymeâ€Driven Hasselbackâ€Like DNAâ€Based Inorganic Superstructures. Advanced Functional Materials, 2017, 27, 1704213.	7.8	33
167	Nanostructured carbon–crystalline titania composites from microphase separation of poly(ethylene) Tj ETQq1 I	l 0.78431 2.2	4 rgBT /Ove
168	Easy access to efficient magnetically recyclable separation of histidine-tagged proteins using superparamagnetic nickel ferrite nanoparticle clusters. Journal of Materials Chemistry, 2011, 21, 6713.	6.7	32
169	Transformation of carbon dioxide into carbon nanotubes for enhanced ion transport and energy storage. Nanoscale, 2020, 12, 7822-7833.	2.8	32
170	A simple method for producing mesoporous anatase TiO2 nanocrystals with elevated photovoltaic performance. Scripta Materialia, 2010, 62, 223-226.	2.6	31
171	C60 aminofullerene-magnetite nanocomposite designed for efficient visible light photocatalysis and magnetic recovery. Carbon, 2014, 69, 92-100.	5.4	31
172	Highly mesoporous silicon derived from waste iron slag for high performance lithium ion battery anodes. Journal of Materials Chemistry A, 2015, 3, 21899-21906.	5.2	30
173	Easy access to highly crystalline mesoporous transition-metal oxides with controllable uniform large pores by using block copolymers synthesized via atom transfer radical polymerization. Microporous and Mesoporous Materials, 2011, 143, 149-156.	2.2	29
174	Polymer-coated spherical mesoporous silica for pH-controlled delivery of insulin. Journal of Materials Chemistry B, 2014, 2, 616-619.	2.9	29
175	Surface conversion derived core-shell nanostructures of Co particles@RuCo alloy for superior hydrogen evolution in alkali and seawater. Applied Catalysis B: Environmental, 2022, 315, 121554.	10.8	29
176	Synthesis of hierarchical linearly assembled graphitic carbon nanoparticles via catalytic graphitization in SBA-15. Carbon, 2014, 75, 95-103.	5.4	28
177	Development of novel mesoporous C–TiO2–SnO2 nanocomposites and their application to anode materials in lithium ion secondary batteries. Microporous and Mesoporous Materials, 2012, 151, 172-179.	2.2	27
178	Enhanced stability and reusability of marine epoxide hydrolase using ship-in-a-bottle approach with magnetically-separable mesoporous silica. Journal of Molecular Catalysis B: Enzymatic, 2013, 89, 48-51.	1.8	27
179	A Convenient Alcohol Sensor Using One-Pot Nanocomposite Entrapping Alcohol Oxidase and Magnetic Nanoparticles as Peroxidase Mimetics. Journal of Nanoscience and Nanotechnology, 2012, 12, 5914-5919.	0.9	26
180	Nano-graphite functionalized mesocellular carbon foam with enhanced intra-penetrating electrical percolation networks for high performance electrochemical energy storage electrode materials. Physical Chemistry Chemical Physics, 2012, 14, 5695.	1.3	26

#	Article	IF	CITATIONS
181	Ordered Mesoporous Tungsten Suboxide Counter Electrode for Highly Efficient Iodineâ€Free Electrolyteâ€Based Dyeâ€&ensitized Solar Cells. ChemSusChem, 2013, 6, 299-307.	3.6	26
182	Crosslinked chitosan coating on magnetic mesoporous silica with pre-adsorbed carbonic anhydrase for carbon dioxide conversion. Chemical Engineering Journal, 2015, 276, 232-239.	6.6	26
183	Magnetically recoverable hybrid TiO2 nanocrystal clusters with enhanced photocatalytic activity. Materials Letters, 2013, 93, 141-144.	1.3	25
184	A biopolymer-based functional separator for stable Li metal batteries with an additive-free commercial electrolyte. Journal of Materials Chemistry A, 2021, 9, 7774-7781.	5.2	25
185	Siliconâ€Rich Carbon Hybrid Nanofibers from Waterâ€Based Spinning: The Synergy Between Silicon and Carbon for Liâ€ion Battery Anode Application. ChemElectroChem, 2014, 1, 220-226.	1.7	24
186	Influence of Metal Particle Size on Oxidative CO ₂ Reforming of Methane over Supported Nickel Catalysts: Effects of Secondâ€Metal Addition. ChemCatChem, 2015, 7, 1445-1452.	1.8	24
187	Tracking the confinement effect of highly dispersive carbon in a tungsten oxide/carbon nanocomposite: conversion anode materials in lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 24782-24789.	5.2	24
188	Self color-changing ordered mesoporous ceria for reagent-free colorimetric biosensing. Nanoscale, 2020, 12, 1419-1424.	2.8	23
189	Enhanced Photocatalytic Activity of Highly Crystallized and Ordered Mesoporous Titanium Oxide Measured by Silicon Resonators. Analytical Chemistry, 2010, 82, 3032-3037.	3.2	22
190	Facile synthesis of a mesostructured TiO ₂ –graphitized carbon (TiO ₂ –gC) composite through the hydrothermal process and its application as the anode of lithium ion batteries. RSC Advances, 2016, 6, 39484-39491.	1.7	22
191	Development strategies in transition metal carbide for hydrogen evolution reaction: A review. Korean Journal of Chemical Engineering, 2020, 37, 1317-1330.	1.2	22
192	Polymer Interface-Dependent Morphological Transition toward Two-Dimensional Porous Inorganic Nanocoins as an Ultrathin Multifunctional Layer for Stable Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2021, 143, 15644-15652.	6.6	22
193	Rapid (â^¼10 min) synthesis of single-crystalline, nanorice TiO2 mesoparticles with a high photovoltaic efficiency of above 8%. Chemical Communications, 2011, 47, 8572.	2.2	21
194	Effect of Mesoporous Structured Cathode Materials on Charging Potentials and Rate Capability of Lithium–Oxygen Batteries. ChemSusChem, 2015, 8, 3146-3152.	3.6	21
195	One pot synthesis of mesoporous boron nitride using polystyrene-b-poly(ethylene oxide) block copolymer. RSC Advances, 2015, 5, 6528-6535.	1.7	21
196	Spinodal decomposition: a new approach to hierarchically porous inorganic materials for energy storage. National Science Review, 2020, 7, 1635-1637.	4.6	21
197	A direct one-step synthetic route to Pd–Pt nanostructures with controllable shape, size, and composition for electrocatalytic applications. Journal of Materials Chemistry A, 2014, 2, 19239-19246.	5.2	20
198	Enhanced performance of sulfur-infiltrated bimodal mesoporous carbon foam by chemical solution deposition as cathode materials for lithium sulfur batteries. Scientific Reports, 2017, 7, 42238.	1.6	20

#	Article	IF	CITATIONS
199	Ultrathin and Bifunctional Polymer-Nanolayer-Embedded Separator to Simultaneously Alleviate Li Dendrite Growth and Polysulfide Crossover in Li–S Batteries. ACS Applied Energy Materials, 2021, 4, 611-622.	2.5	20
200	Effects of functional supports on efficiency and stability of atomically dispersed noble-metal electrocatalysts. EnergyChem, 2021, 3, 100054.	10.1	20
201	A highly sensitive immunoassay using antibody-conjugated spherical mesoporous silica with immobilized enzymes. Chemical Communications, 2014, 50, 3546.	2.2	19
202	Mesocellular polymer foams with unprecedented uniform large mesopores and high surface areasElectronic supplementary information (ESI) available: isotherms and corresponding pore size distribution of the MCF silica template and poly(DVB)/MCF silica composite, IR spectrum of mesocellular polymer foam, and TEM image of the MCF silica template. See http://www.rsc.org/suppdata/cc/b3/b310713b/. Chemical Communications, 2004, 562.	2.2	18
203	Crystallinityâ€Controlled Titanium Oxide–Carbon Nanocomposites with Enhanced Lithium Storage Performance. ChemSusChem, 2012, 5, 2376-2382.	3.6	18
204	Single enzyme nanoparticles armored by a thin silicate network: Single enzyme caged nanoparticles. Chemical Engineering Journal, 2017, 322, 510-515.	6.6	18
205	Thermally Robust Porous Bimetallic (Ni _{<i>x</i>} Pt _{1–<i>x</i>}) Alloy Mesocrystals within Carbon Framework: High-Performance Catalysts for Oxygen Reduction and Hydrogenation Reactions. ACS Applied Materials & Interfaces, 2019, 11, 21435-21444.	4.0	18
206	Controlled Leaching Derived Synthesis of Atomically Dispersed/Clustered Gold on Mesoporous Cobalt Oxide for Enhanced Oxygen Evolution Reaction Activity. Small Methods, 2019, 3, 1800293.	4.6	18
207	Bismuth Sulfonate Immobilized on Silica Gel for Allylation of Aldehydes and Synthesis of Homoallylic Amines. Catalysis Letters, 2004, 96, 201-204.	1.4	17
208	Enhancing Durability and Photoelectrochemical Performance of the Earth Abundant Ni–Mo/TiO ₂ /CdS/CIGS Photocathode under Various pH Conditions. ChemSusChem, 2018, 11, 3679-3688.	3.6	17
209	Inter-particle and interfacial interaction of magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2007, 310, e806-e808.	1.0	15
210	Efficient protein digestion using highly-stable and reproducible trypsin coatings on magnetic nanofibers. Chemical Engineering Journal, 2016, 288, 770-777.	6.6	15
211	Highly sensitive colorimetric detection of allergies based on an immunoassay using peroxidase-mimicking nanozymes. Analyst, The, 2018, 143, 1182-1187.	1.7	15
212	Cancer Therapy: Programmed Nanoparticle‣oaded Nanoparticles for Deepâ€Penetrating 3D Cancer Therapy (Adv. Mater. 29/2018). Advanced Materials, 2018, 30, 1870213.	11.1	15
213	Quenching of material dependence in few-cycle driven electron acceleration from nanoparticles under many-particle charge interaction. Journal of Modern Optics, 2017, 64, 995-1003.	0.6	14
214	A study of the palladium size effect on the direct synthesis of hydrogen peroxide from hydrogen and oxygen using highly uniform palladium nanoparticles supported on carbon. Korean Journal of Chemical Engineering, 2012, 29, 1115-1118.	1.2	13
215	Ultra-low-cost route to mesocellular siliceous foam from steel slag and mesocellular carbon foam as catalyst support in fuel cell. Microporous and Mesoporous Materials, 2012, 151, 450-456.	2.2	13
216	Crowding and confinement effects on enzyme stability in mesoporous silicas. International Journal of Biological Macromolecules, 2020, 144, 118-126.	3.6	13

#	Article	IF	CITATIONS
217	Direct access to aggregation-free and small intermetallic nanoparticles in ordered, large-pore mesoporous carbon for an electrocatalyst. RSC Advances, 2016, 6, 88255-88264.	1.7	12
218	Design and roles of RGO-wrapping in charge transfer and surface passivation in photoelectrochemical enhancement of cascade-band photoanode. Nano Research, 2017, 10, 2415-2430.	5.8	11
219	Electrochemical Activity Studies of Glucose Oxidase (GOx)-Based and Pyranose Oxidase (POx)-Based Electrodes in Mesoporous Carbon: Toward Biosensor and Biofuel Cell Applications. Electroanalysis, 2014, 26, 2075-2079.	1.5	10
220	Cyanoacetic acid tethered thiophene for well-matched LUMO level in Ru(II)-terpyridine dye sensitized solar cells. Dyes and Pigments, 2016, 126, 270-278.	2.0	10
221	Simple synthesis of multiple length-scale structured Nb ₂ O ₅ with functional macrodomain-integrated mesoporous frameworks. Chemical Communications, 2017, 53, 4100-4103.	2.2	10
222	A Versatile Strategy for Achieving Fastâ€Charging Batteries via Interfacial Engineering: Pseudocapacitive Potassium Storage without Nanostructuring. Small, 2022, 18, .	5.2	10
223	Optical absorption and photoluminescence properties of the PPV nanotubes and nanowires. Macromolecular Symposia, 2003, 201, 119-126.	0.4	9
224	Synthesis of new nanostructured carbon materials using silica nanostructured templates by Korean research groups. International Journal of Nanotechnology, 2006, 3, 253.	0.1	9
225	Simple Synthesis of Platinum Dendritic Aggregates Supported on Conductive Tungsten Oxide Nanowires as Highâ€Performance Methanol Oxidation Electrocatalysts. Chemistry - A European Journal, 2012, 18, 2797-2801.	1.7	9
226	Using waste Li ion batteries as cathodes in rechargeable Li–liquid batteries. Physical Chemistry Chemical Physics, 2013, 15, 7036.	1.3	9
227	Sulfenic Acid Doped Mesocellular Carbon Foam as Powerful Catalyst for Activation of V(II)/V(III) Reaction in Vanadium Redox Flow Battery. Journal of the Electrochemical Society, 2018, 165, A2703-A2708.	1.3	9
228	Oxygen Evolution Reaction on Niâ€based Twoâ€dimensional (2D) Titanate Nanosheets: Investigation on Effect of Fe Coâ€doping and Fe Incorporation from Electrolyte on the Activity. ChemistrySelect, 2018, 3, 5130-5137.	0.7	9
229	Improved pseudocapacitive charge storage in highly ordered mesoporous TiO ₂ /carbon nanocomposites as high-performance Li-ion hybrid supercapacitor anodes. RSC Advances, 2019, 9, 37882-37888.	1.7	9
230	Determination of Adsorption Isotherms of Overpotentially Deposited Hydrogen on Platinum and Iridium in KOH Aqueous Solution Using the Phase-Shift Method and Correlation Constants. Journal of Chemical & Engineering Data, 2010, 55, 2363-2372.	1.0	8
231	Effect of Support for Nonâ€Noble NiMo Electrocatalyst in Alkaline Hydrogen Oxidation. Advanced Sustainable Systems, 2022, 6, .	2.7	8
232	Direct confinement of Ru nanoparticles inside nanochannels of large pore mesoporous aluminosilicate for Fischer–Tropsch synthesis. Journal of Materials Chemistry A, 2015, 3, 23725-23731.	5.2	7
233	Fabrication of conductive oxidase-entrapping nanocomposite of mesoporous ceria–carbon for efficient electrochemical biosensor. RSC Advances, 2015, 5, 78747-78753.	1.7	7
234	Solvothermal synthesis of sodium cobalt fluoride (NaCoF3) nanoparticle clusters. Materials Letters, 2017, 207, 89-92.	1.3	7

#	Article	IF	CITATIONS
235	Comparative investigation of nitrogen species in transition metals incorporated carbon catalysts for the oxygen reduction reaction. Chemical Physics Letters, 2018, 708, 42-47.	1.2	6
236	Vanadium oxide bronzes as cathode active materials for non-lithium-based batteries. CrystEngComm, 2021, 23, 5267-5283.	1.3	6
237	Reversibility of Lithiumâ€lon–Air Batteries Using Lithium Intercalation Compounds as Anodes. ChemPlusChem, 2015, 80, 349-353.	1.3	5
238	Plasmaâ€Assisted Catalytic Effects of TiO ₂ /Macroporous SiO ₂ on the Synthesis of Light Hydrocarbons from Methane. ChemCatChem, 2020, 12, 5067-5075.	1.8	5
239	Highly Sensitive and Magnetically Switchable Biosensors Using Ordered Mesoporous Carbons. ACS Symposium Series, 2008, , 234-242.	0.5	4
240	Carbon dioxide to solid carbon at the surface of iron nanoparticle: Hollow nanocarbons for sodium ion battery anode application. Journal of CO2 Utilization, 2019, 34, 588-595.	3.3	4
241	Solid-state conversion of metal oleate precursors for the preparation of LiNi1/3Co1/3Mn1/3O2 as cathode material for lithium-ion batteries. Korean Journal of Chemical Engineering, 2020, 37, 1258-1265.	1.2	4
242	Flexible Solar Cells: Mechanically Recoverable and Highly Efficient Perovskite Solar Cells: Investigation of Intrinsic Flexibility of Organic-Inorganic Perovskite (Adv. Energy Mater. 22/2015). Advanced Energy Materials, 2015, 5, n/a-n/a.	10.2	3
243	Salt-assisted synthesis of mesostructured cellular foams consisting ofÂsmall primary particles with enhanced hydrothermal stability. Microporous and Mesoporous Materials, 2015, 212, 66-72.	2.2	3
244	Bulk Concentration Dependence of Electrolyte Resistance Within Mesopores of Carbon Electrodes in Electric Double‣ayer Capacitors. Bulletin of the Korean Chemical Society, 2016, 37, 213-218.	1.0	3
245	Effects of Wet-Pressing and Cross-Linking on the Tensile Properties of Carbon Nanotube Fibers. Materials, 2018, 11, 2170.	1.3	3
246	Compressive Properties of Nanoporous Gold Through Nanoindentation: An Analytical Approach Based on the Expanding Cavity Model. Metals and Materials International, 2021, 27, 3787-3795.	1.8	2
247	Synthesis of Novel Mesoporous Carbons and Their Applications to Electrochemical Double-Layer Capacitors. Materials Research Society Symposia Proceedings, 1999, 593, 193.	0.1	1