Ziqiang Shao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6444626/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cellulose nanofiber–graphene all solid-state flexible supercapacitors. Journal of Materials Chemistry A, 2013, 1, 63-67.	5.2	320
2	Layer-by-Layer assembled hybrid multilayer thin film electrodes based on transparent cellulose nanofibers paper for flexible supercapacitors applications. Journal of Power Sources, 2014, 249, 148-155.	4.0	111
3	Nitrogen and oxygen-codoped carbon nanospheres for excellent specific capacitance and cyclic stability supercapacitor electrodes. Chemical Engineering Journal, 2017, 330, 1166-1173.	6.6	106
4	Paper-based transparent flexible thin film supercapacitors. Nanoscale, 2013, 5, 5307.	2.8	100
5	Cellulose nanofiber/single-walled carbon nanotube hybrid non-woven macrofiber mats as novel wearable supercapacitors with excellent stability, tailorability and reliability. Nanoscale, 2014, 6, 4083.	2.8	88
6	Halloysite nanotubes and Fe3O4 nanoparticles enhanced adsorption removal of heavy metal using electrospun membranes. Applied Clay Science, 2018, 161, 225-234.	2.6	83
7	Using a fully recyclable dicarboxylic acid for producing dispersible and thermally stable cellulose nanomaterials from different cellulosic sources. Cellulose, 2017, 24, 2483-2498.	2.4	77
8	Dual physically crosslinked healable polyacrylamide/cellulose nanofibers nanocomposite hydrogels with excellent mechanical properties. Carbohydrate Polymers, 2018, 193, 73-81.	5.1	77
9	Novel polymer Li-ion binder carboxymethyl cellulose derivative enhanced electrochemical performance for Li-ion batteries. Carbohydrate Polymers, 2014, 112, 532-538.	5.1	74
10	Cellulosic materials-enhanced sandwich structure-like separator via electrospinning towards safer lithium-ion battery. Carbohydrate Polymers, 2019, 214, 328-336.	5.1	62
11	Biomass-based O, N-codoped activated carbon aerogels with ultramicropores for supercapacitors. Journal of Materials Science, 2018, 53, 12374-12387.	1.7	59
12	In-situ fabricated anisotropic halide perovskite nanocrystals in polyvinylalcohol nanofibers: Shape tuning and polarized emission. Nano Research, 2019, 12, 1411-1416.	5.8	54
13	Thermally Stable Cellulose Nanocrystals toward High-Performance 2D and 3D Nanostructures. ACS Applied Materials & Interfaces, 2017, 9, 28922-28929.	4.0	53
14	Cellulosic Biomass-Reinforced Polyvinylidene Fluoride Separators with Enhanced Dielectric Properties and Thermal Tolerance. ACS Applied Materials & Interfaces, 2017, 9, 20885-20894.	4.0	48
15	A cellulose-based hybrid 2D material aerogel for a flexible all-solid-state supercapacitor with high specific capacitance. RSC Advances, 2017, 7, 43512-43520.	1.7	46
16	Eco-friendly polyvinyl alcohol/cellulose nanofiber–Li ⁺ composite separator for high-performance lithium-ion batteries. RSC Advances, 2016, 6, 97912-97920.	1.7	43
17	Tough and Multifunctional Composite Film Actuators Based on Cellulose Nanofibers toward Smart Wearables. ACS Applied Materials & Interfaces, 2021, 13, 38700-38711.	4.0	43
18	Carboxymethyl Cellulose Nanofibrils with a Treelike Matrix: Preparation and Behavior of Pickering Emulsions Stabilization. ACS Sustainable Chemistry and Engineering, 2019, 7, 12887-12896.	3.2	40

ZIQIANG SHAO

#	Article	IF	CITATIONS
19	Preparation and dielectric properties of cyanoethyl cellulose/BaTiO ₃ flexible nanocomposite films. RSC Advances, 2015, 5, 15283-15291.	1.7	35
20	Nanocomposites membranes from cellulose nanofibers, SiO2 and carboxymethyl cellulose with improved properties. Carbohydrate Polymers, 2020, 233, 115818.	5.1	30
21	Robust and Highly Sensitive Cellulose Nanofiber-Based Humidity Actuators. ACS Applied Materials & Interfaces, 2021, 13, 54417-54427.	4.0	29
22	Barium titanate as a filler for improving the dielectric property of cyanoethyl cellulose/antimony tin oxide nanocomposite films. Composites Part A: Applied Science and Manufacturing, 2016, 86, 1-8.	3.8	28
23	Facile synthesis of magnetic fluorescent nanoparticles: adsorption and selective detection of Hg(ii) in water. Journal of Materials Chemistry C, 2018, 6, 2360-2369.	2.7	27
24	Enhanced Cyclability of C/Lithium Iron Phosphate Cathodes with a Novel water-soluble lithium-ion binder. Electrochimica Acta, 2014, 145, 11-18.	2.6	24
25	O/N-co-doped hierarchically porous carbon from carboxymethyl cellulose ammonium for high-performance supercapacitors. Journal of Materials Science, 2020, 55, 7417-7431.	1.7	24
26	Zr(Ⅳ) rosslinked Polyacrylamide/Polyanionic Cellulose Composite Hydrogels with High Strength and Unique Acid Resistance. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 981-991.	2.4	23
27	Preparation and properties of environmental-friendly coatings based on carboxymethyl cellulose nitrate ester & modified alkyd. Carbohydrate Polymers, 2016, 137, 92-99.	5.1	22
28	Low-cost and robust production of multi-doped 2D carbon nanosheets for high-performance lithium-ion capacitors. Chemical Engineering Journal, 2019, 370, 508-517.	6.6	22
29	N/O co-doped hierarchically porous carbon with three-dimensional conductive network for high-performance supercapacitors. Journal of Alloys and Compounds, 2021, 873, 159705.	2.8	22
30	Chitosan and carboxymethyl cellulose-multilayered magnetic fluorescent systems for reversible protein immobilization. Carbohydrate Polymers, 2018, 201, 357-366.	5.1	21
31	Redispersibility of cellulose nanoparticles modified by phenyltrimethoxysilane and its application in stabilizing Pickering emulsions. Journal of Materials Science, 2019, 54, 11713-11725.	1.7	19
32	CQDs-Doped Magnetic Electrospun Nanofibers: Fluorescence Self-Display and Adsorption Removal of Mercury(II). ACS Omega, 2018, 3, 4220-4230.	1.6	18
33	Ingenious preparation of N/NiO _x co-doped hierarchical porous carbon nanosheets derived from chitosan nanofibers for high-performance supercapacitors. Nanotechnology, 2020, 31, 335713.	1.3	18
34	Preparation and Characterization of Cellulose/RDX Composite Aerogel Spheres. Propellants, Explosives, Pyrotechnics, 2019, 44, 1613-1620.	1.0	16
35	Selfâ€doping porous carbon materials synthesis from bioâ€wastes sodium lignosulfonate with high performance for supercapacitors. International Journal of Energy Research, 2022, 46, 2373-2384.	2.2	15
36	Dispersion of reduced graphene oxide with montmorillonite for enhancing dielectric properties and thermal stability of cyanoethyl cellulose nanocomposites. Cellulose, 2018, 25, 7143-7152.	2.4	14

ZIQIANG SHAO

#	Article	IF	CITATIONS
37	Nanocellulose-derived carbon nanosphere fibers-based nanohybrid aerogel for high-performance all-solid-state flexible supercapacitors. Journal of Materials Science: Materials in Electronics, 2019, 30, 8585-8594.	1.1	14
38	Eco-Friendly Electrochemical Biosensor based on Sodium Carboxymethyl Cellulose/Reduced Graphene Oxide Composite. Macromolecular Research, 2019, 27, 327-333.	1.0	14
39	Biomimetic-Inspired One-Step Strategy for Improvement of Interfacial Interactions in Cellulose Nanofibers by Modification of the Surface of Nitramine Explosives. Langmuir, 2021, 37, 8486-8497.	1.6	14
40	Biomass-based magnetic fluorescent nanoparticles: One-step scalable synthesis, application as drug carriers and mechanism study. Carbohydrate Polymers, 2018, 184, 277-287.	5.1	13
41	Inch-sized aligned polymer nanofiber films with embedded CH ₃ NH ₃ PbBr ₃ nanocrystals: electrospinning fabrication using a folded aluminum foil as the collector. Nanotechnology, 2020, 31, 075708.	1.3	11
42	Enhancement strategy of mechanical property by constructing of energetic RDX@CNFs composites in propellants, and investigation on its combustion and sensitivity behavior. Combustion and Flame, 2022, 244, 112249.	2.8	11
43	Fe ₃ O ₄ /Nitrogenâ€Doped Carbon Electrodes from Tailored Thermal Expansion toward Flexible Solidâ€5tate Asymmetric Supercapacitors. Advanced Materials Interfaces, 2019, 6, 1901250.	1.9	8
44	Synergistically Suppressing Lithium Dendrite Growth by Coating Polyâ€ <scp>l</scp> ‣actic Acid on Sustainable Gel Polymer Electrolyte. Energy Technology, 2019, 7, 1800768.	1.8	6
45	Preparation of treelike and rodlike carboxymethylated nanocellulose and their effect on carboxymethyl cellulose films. Journal of Applied Polymer Science, 2021, 138, 50092.	1.3	6
46	Carboxymethylcellulose ammonium-derived nitrogen-doped carbon fiber/molybdenum disulfide hybrids for high-performance supercapacitor electrodes. RSC Advances, 2018, 8, 28944-28952.	1.7	5
47	Boron and nitrogen co-doped carbon nanospheres for supercapacitor electrode with excellent specific capacitance. Nanotechnology, 2022, 33, 185403.	1.3	5
48	Cellulose acetateâ€based separators prepared by a reversible acetylation process for highâ€performance lithiumâ€ion batteries. Journal of Applied Polymer Science, 2021, 138, 50738.	1.3	3
49	N, P co-doped porous graphene with high electrochemical properties obtained via the laser induction of cellulose nanofibrils. Chinese Journal of Chemical Engineering, 2022, 47, 31-38.	1.7	3
50	Preparation and characterization of RDX based composite energetic materials with a cellulose matrix. Journal of Applied Polymer Science, 2021, 138, 50329.	1.3	3
51	Green synthesis of polyacrylamide/polyanionic cellulose hydrogels composited with Zr-based coordination polymer and their enhanced mechanical and adsorptive properties. Polymer Journal, 2022, 54, 515-524.	1.3	3
52	Stiffened and toughened polyacrylamide/polyanionic cellulose physical hydrogels mediated by ferric ions. Colloid and Polymer Science, 2021, 299, 999-1009.	1.0	2
53	Multicomponent doped hierarchically porous carbon derived from natural polyelectrolyte for highâ€performance supercapacitors. International Journal of Energy Research, 2022, 46, 17056-17067.	2.2	2
54	Preparation of Fe/N Co-Doped Hierarchical Porous Carbon Nanosheets Derived From Chitosan Nanofibers for High-Performance Supercapacitors. Journal of Electrochemical Energy Conversion and Storage, 2022, 19, .	1.1	1