## Hagit Eldar-Finkelman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6444381/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition).<br>Autophagy, 2016, 12, 1-222.                                                                                                                                  | 4.3 | 4,701     |
| 2  | Glycogen synthase kinase 3: an emerging therapeutic target. Trends in Molecular Medicine, 2002, 8, 126-132.                                                                                                                                                 | 3.5 | 380       |
| 3  | GSK-3 Inhibitors: Preclinical and Clinical Focus on CNS. Frontiers in Molecular Neuroscience, 2011, 4, 32.                                                                                                                                                  | 1.4 | 274       |
| 4  | Rapid antidepressive-like activity of specific glycogen synthase kinase-3 inhibitor and its effect on<br>β-catenin in mouse hippocampus. Biological Psychiatry, 2004, 55, 781-784.                                                                          | 0.7 | 269       |
| 5  | Leptin Induces Insulin-like Signaling That Antagonizes cAMP Elevation by Glucagon in Hepatocytes.<br>Journal of Biological Chemistry, 2000, 275, 11348-11354.                                                                                               | 1.6 | 214       |
| 6  | Inactivation of Glycogen Synthase Kinase-3 by Epidermal Growth Factor Is Mediated by<br>Mitogen-activated Protein Kinase/p90 Ribosomal Protein S6 Kinase Signaling Pathway in NIH/3T3 Cells.<br>Journal of Biological Chemistry, 1995, 270, 987-990.        | 1.6 | 201       |
| 7  | Inhibition of Glycogen Synthase Kinase-3 Ameliorates β-Amyloid Pathology and Restores Lysosomal<br>Acidification and Mammalian Target of Rapamycin Activity in the Alzheimer Disease Mouse Model.<br>Journal of Biological Chemistry, 2013, 288, 1295-1306. | 1.6 | 193       |
| 8  | Increased glucose uptake promotes oxidative stress and PKC-δactivation in adipocytes of obese,<br>insulin-resistant mice. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285,<br>E295-E302.                                           | 1.8 | 164       |
| 9  | Serine 332 Phosphorylation of Insulin Receptor Substrate-1 by Glycogen Synthase Kinase-3 Attenuates<br>Insulin Signaling. Journal of Biological Chemistry, 2005, 280, 4422-4428.                                                                            | 1.6 | 145       |
| 10 | Inhibition of glycogen synthase kinase-3β by bivalent zinc ions: insight into the insulin-mimetic action of zinc. Biochemical and Biophysical Research Communications, 2002, 295, 102-106.                                                                  | 1.0 | 142       |
| 11 | Insulin Mimetic Action of Synthetic Phosphorylated Peptide Inhibitors of Glycogen Synthase Kinase-3.<br>Journal of Pharmacology and Experimental Therapeutics, 2003, 305, 974-980.                                                                          | 1.3 | 136       |
| 12 | PKC-δ-dependent activation of oxidative stress in adipocytes of obese and insulin-resistant mice: role<br>for NADPH oxidase. American Journal of Physiology - Endocrinology and Metabolism, 2005, 288,<br>E405-E411.                                        | 1.8 | 107       |
| 13 | Long-Term Treatment with Novel Glycogen Synthase Kinase-3 Inhibitor Improves Glucose Homeostasis<br>in ob/ob Mice: Molecular Characterization in Liver and Muscle. Journal of Pharmacology and<br>Experimental Therapeutics, 2006, 316, 17-24.              | 1.3 | 104       |
| 14 | Role of glycogen synthase kinase-3β in early depressive behavior induced by mild traumatic brain injury.<br>Molecular and Cellular Neurosciences, 2007, 34, 571-577.                                                                                        | 1.0 | 104       |
| 15 | The role of glycogen synthase kinase-3 in insulin resistance and Type 2 diabetes. Expert Opinion on<br>Therapeutic Targets, 2002, 6, 555-561.                                                                                                               | 1.5 | 89        |
| 16 | Combined regulation of mTORC1 and lysosomal acidification by GSK-3 suppresses autophagy and contributes to cancer cell growth. Oncogene, 2015, 34, 4613-4623.                                                                                               | 2.6 | 81        |
| 17 | Nuclear GSK-3β inhibits the canonical Wnt signalling pathway in a β-catenin phosphorylation-independent manner. Oncogene, 2008, 27, 3546-3555.                                                                                                              | 2.6 | 80        |
| 18 | Peptide Inhibitors Targeting Protein Kinases. Current Pharmaceutical Design, 2009, 15, 2463-2470.                                                                                                                                                           | 0.9 | 77        |

HAGIT ELDAR-FINKELMAN

| #  | Article                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Glycogen synthase kinase 3Î <sup>2</sup> mediates high glucose-induced ubiquitination and proteasome degradation of insulin receptor substrate 1. Journal of Endocrinology, 2010, 206, 171-181.                                                                    | 1.2 | 77        |
| 20 | Regulation of Th1 Cells and Experimental Autoimmune Encephalomyelitis by Glycogen Synthase<br>Kinase-3. Journal of Immunology, 2013, 190, 5000-5011.                                                                                                               | 0.4 | 71        |
| 21 | Lithium-Mediated Phosphorylation of Glycogen Synthase Kinase-3b Involves PI3 Kinase-Dependent<br>Activation of Protein Kinase C-1±. Journal of Molecular Neuroscience, 2004, 24, 237-246.                                                                          | 1.1 | 62        |
| 22 | Sequential phosphorylation of insulin receptor substrate-2 by glycogen synthase kinase-3 and c-Jun<br>NH2-terminal kinase plays a role in hepatic insulin signaling. American Journal of Physiology -<br>Endocrinology and Metabolism, 2008, 294, E307-E315.       | 1.8 | 62        |
| 23 | Regulation of Ribosomal S6 Protein Kinase-p90 <sup><i>rsk</i></sup> , Glycogen Synthase Kinase 3, and<br>β-Catenin in Early <i>Xenopus</i> Development. Molecular and Cellular Biology, 1999, 19, 1427-1437.                                                       | 1.1 | 54        |
| 24 | A unique type of GSK-3 inhibitor brings new opportunities to the clinic. Science Signaling, 2016, 9, ra110.                                                                                                                                                        | 1.6 | 53        |
| 25 | Substrate Competitive GSK-3 Inhibitors strategy and Implications. Biochimica Et Biophysica Acta -<br>Proteins and Proteomics, 2010, 1804, 598-603.                                                                                                                 | 1.1 | 50        |
| 26 | Mechanisms and Therapeutic Implications of GSK-3 in Treating Neurodegeneration. Cells, 2021, 10, 262.                                                                                                                                                              | 1.8 | 48        |
| 27 | Identification of Novel Glycogen Synthase Kinase-3Î <sup>2</sup> Substrate-interacting Residues Suggests a Common<br>Mechanism for Substrate Recognition. Journal of Biological Chemistry, 2006, 281, 30621-30630.                                                 | 1.6 | 47        |
| 28 | Selective loss of glycogen synthase kinase-3α in birds reveals distinct roles for GSK-3 isozymes in tau phosphorylation. FEBS Letters, 2011, 585, 1158-1162.                                                                                                       | 1.3 | 46        |
| 29 | Challenges and opportunities with glycogen synthase kinase-3 inhibitors for insulin resistance and<br>Type 2 diabetes treatment. Expert Opinion on Investigational Drugs, 2003, 12, 1511-1519.                                                                     | 1.9 | 45        |
| 30 | Identification of Glycogen Synthase Kinase-3 Inhibitors with a Selective Sting for Glycogen Synthase<br>Kinase-3α. Journal of Medicinal Chemistry, 2012, 55, 4407-4424.                                                                                            | 2.9 | 45        |
| 31 | Peptides Targeting Protein Kinases: Strategies and Implications. Physiology, 2006, 21, 411-418.                                                                                                                                                                    | 1.6 | 43        |
| 32 | GSK3β and β-Catenin Modulate Radiation Cytotoxicity in Pancreatic Cancer. Neoplasia, 2010, 12, 357-365.                                                                                                                                                            | 2.3 | 43        |
| 33 | Wnt signaling pathway overcomes the disruption of neuronal differentiation of neural progenitor cells induced by oligomeric amyloid β-peptide. Journal of Neurochemistry, 2011, 116, 522-529.                                                                      | 2.1 | 41        |
| 34 | Distinct Molecular Regulation of Glycogen Synthase Kinase-3α Isozyme Controlled by Its N-terminal<br>Region. Journal of Biological Chemistry, 2011, 286, 13470-13480.                                                                                              | 1.6 | 41        |
| 35 | Design, Synthesis, and Biological Evaluation of<br>1-Phenylpyrazolo[3,4- <i>e</i> ]pyrrolo[3,4- <i>g</i> ]indolizine-4,6(1 <i>H</i> ,5 <i>H</i> )-diones as New<br>Glycogen Synthase Kinase-31² Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 10066-10078. | 2.9 | 39        |
| 36 | The SIL Gene Is Essential for Mitotic Entry and Survival of Cancer Cells. Cancer Research, 2007, 67, 4022-4027.                                                                                                                                                    | 0.4 | 38        |

HAGIT ELDAR-FINKELMAN

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | GSK-3 inhibition: Achieving moderate efficacy with high selectivity. Biochimica Et Biophysica Acta -<br>Proteins and Proteomics, 2013, 1834, 1410-1414.                                                                                    | 1.1 | 37        |
| 38 | Structure-based optimization of oxadiazole-based GSK-3 inhibitors. European Journal of Medicinal Chemistry, 2013, 61, 26-40.                                                                                                               | 2.6 | 35        |
| 39 | Glycogen Synthase Kinase-3 Inhibitors: Preclinical and Clinical Focus on CNS-A Decade Onward.<br>Frontiers in Molecular Neuroscience, 2021, 14, 792364.                                                                                    | 1.4 | 33        |
| 40 | Coordinated phosphorylation of insulin receptor substrate-1 by glycogen synthase kinase-3 and<br>protein kinase CβII in the diabetic fat tissue. American Journal of Physiology - Endocrinology and<br>Metabolism, 2008, 294, E1169-E1177. | 1.8 | 25        |
| 41 | Elucidating Substrate and Inhibitor Binding Sites on the Surface of CSK-3Î <sup>2</sup> and the Refinement of a Competitive Inhibitor. Journal of Molecular Biology, 2011, 408, 366-378.                                                   | 2.0 | 22        |
| 42 | Synthesis and biological evaluation of glycogen synthase kinase 3 (CSK-3) inhibitors: An fast and atom<br>efficient access to 1-aryl-3-benzylureas. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5610-5615.                       | 1.0 | 22        |
| 43 | Intranasal siRNA administration reveals IGF2 deficiency contributes to impaired cognition in Fragile X syndrome mice. JCI Insight, 2017, 2, e91782.                                                                                        | 2.3 | 22        |
| 44 | New Insights into the Autoinhibition Mechanism of Glycogen Synthase Kinase-3β. Journal of Molecular<br>Biology, 2008, 383, 999-1007.                                                                                                       | 2.0 | 21        |
| 45 | Identification of eukaryotic elongation factor-2 as a novel cellular target of lithium and glycogen synthase kinase-3. Molecular and Cellular Neurosciences, 2010, 45, 449-455.                                                            | 1.0 | 18        |
| 46 | GSK-3-TSC axis governs lysosomal acidification through autophagy and endocytic pathways. Cellular<br>Signalling, 2020, 71, 109597.                                                                                                         | 1.7 | 16        |
| 47 | Up-regulation of insulin-like growth factor 2 by ketamine requires glycogen synthase kinase-3 inhibition. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 72, 49-54.                                                 | 2.5 | 15        |
| 48 | Discovery and Design of Novel Small Molecule GSK-3 Inhibitors Targeting the Substrate Binding Site.<br>International Journal of Molecular Sciences, 2020, 21, 8709.                                                                        | 1.8 | 14        |
| 49 | Inhibition of GSK-3 ameliorates the pathogenesis of Huntington's disease. Neurobiology of Disease, 2021, 154, 105336.                                                                                                                      | 2.1 | 14        |
| 50 | Ketamine up-regulates a cluster of intronic miRNAs within the serotonin receptor 2C gene by<br>inhibiting glycogen synthase kinase-3. World Journal of Biological Psychiatry, 2017, 18, 445-456.                                           | 1.3 | 11        |
| 51 | Exploiting Substrate Recognition for Selective Inhibition of Protein Kinases. Current Pharmaceutical Design, 2012, 18, 2914-2920.                                                                                                          | 0.9 | 10        |
| 52 | GSK-3β Inhibition Affects Singing Behavior and Neurogenesis in Adult Songbirds. Brain, Behavior and Evolution, 2015, 85, 233-244.                                                                                                          | 0.9 | 7         |
| 53 | GSK-3 and lysosomes meet in Alzheimer's disease. Communicative and Integrative Biology, 2013, 6, e25179.                                                                                                                                   | 0.6 | 6         |
| 54 | <i>Science Signaling</i> Podcast for 15 November 2016: A new type of kinase inhibitor. Science<br>Signaling, 2016, 9, c22.                                                                                                                 | 1.6 | 2         |

| #  | Article                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Prospects in GSK-3 Signaling: From Cellular Regulation to Disease Therapy. Cells, 2022, 11, 1618.                           | 1.8 | 2         |
| 56 | Profile. Drug Discovery Today, 2001, 6, 1072-1073.                                                                          | 3.2 | 1         |
| 57 | Novel Modality of GSK-3 Inhibition For Treating Neurodegeneration. Journal of Neurology and Neuromedicine, 2018, 3, 5-7.    | 0.9 | 1         |
| 58 | GSK-3β Inhibition in Birds Affects Social Behavior and Increases Motor Activity. Frontiers in Physiology, 2022, 13, 881174. | 1.3 | 1         |