Neil McRoberts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/644431/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The global burden of pathogens and pests on major food crops. Nature Ecology and Evolution, 2019, 3, 430-439.	3.4	1,731
2	Plants and biotrophs: a pivotal role for cytokinins?. Trends in Plant Science, 2006, 11, 581-586.	4.3	186
3	SPACSYS: Integration of a 3D root architecture component to carbon, nitrogen and water cycling—Model description. Ecological Modelling, 2007, 200, 343-359.	1.2	129
4	Are green islands red herrings? Significance of green islands in plant interactions with pathogens and pests. Biological Reviews, 2008, 83, 79-102.	4.7	120
5	The Use and Role of Predictive Systems in Disease Management. Annual Review of Phytopathology, 2013, 51, 267-289.	3.5	89
6	The theoretical basis and practical application of relationships between different disease intensity measurements in plants. Annals of Applied Biology, 2003, 142, 191-211.	1.3	86
7	Relationships Between Disease Incidence at Two Levels in a Spatial Hierarchy. Phytopathology, 1997, 87, 542-550.	1.1	82
8	Perceptions of Disease Risk: From Social Construction of Subjective Judgments to Rational Decision Making. Phytopathology, 2011, 101, 654-665.	1.1	73
9	Crop health and its global impacts on the components of food security. Food Security, 2017, 9, 311-327.	2.4	68
10	Decision-making and diagnosis in disease management. Plant Pathology, 1999, 48, 147-153.	1.2	62
11	Coupling Spore Traps and Quantitative PCR Assays for Detection of the Downy Mildew Pathogens of Spinach (<i>Peronospora effusa</i>) and Beet (<i>P. schachtii</i>). Phytopathology, 2014, 104, 1349-1359.	1.1	55
12	The structure of mental models of sustainable agriculture. Nature Sustainability, 2018, 1, 413-420.	11.5	53
13	Multiple origins of downy mildews and mito-nuclear discordance within the paraphyletic genus Phytophthora. PLoS ONE, 2018, 13, e0192502.	1.1	53
14	Phalaris minorseedbank studies: longevity, seedling emergence and seed production as affected by tillage regime. Weed Research, 2007, 47, 73-83.	0.8	52
15	The Basic Reproduction Number of Plant Pathogens: Matrix Approaches to Complex Dynamics. Phytopathology, 2008, 98, 239-249.	1.1	43
16	Validating mathematical models of plant-disease progress in space and time. Mathematical Medicine and Biology, 1997, 14, 85-112.	0.8	41
17	Concepts, approaches, and avenues for modelling crop health and crop losses. European Journal of Agronomy, 2018, 100, 4-18.	1.9	39
18	Risk Factors for Crop Health Under Global Change and Agricultural Shifts: A Framework of Analyses Using Rice in Tropical and Subtropical Asia as a Model. Phytopathology, 2011, 101, 696-709.	1.1	36

NEIL MCROBERTS

#	Article	IF	CITATIONS
19	Integrated approaches to understanding and control of diseases and pests in field crops. Australasian Plant Pathology, 2003, 32, 167.	0.5	33
20	Season-Long Dynamics of Spinach Downy Mildew Determined by Spore Trapping and Disease Incidence. Phytopathology, 2016, 106, 1311-1318.	1.1	32
21	Pathogen behaviour and plant cell reactions in interactions between Alternaria species and leaves of host and nonhost plants. Plant Pathology, 1996, 45, 742-752.	1.2	28
22	Management of Botrytis Leaf Blight of Onion: The Québec Experience of 20 Years of Continual Improvement. Plant Disease, 2011, 95, 504-514.	0.7	23
23	Using models to provide rapid programme support for California's efforts to suppress Huanglongbing disease of citrus. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180281.	1.8	23
24	Economic issues to consider for gene drives. Journal of Responsible Innovation, 2018, 5, S180-S202.	2.3	22
25	Development of an IPM Strategy for Thrips and Tomato spotted wilt virus in Processing Tomatoes in the Central Valley of California. Pathogens, 2020, 9, 636.	1.2	22
26	Production situations as drivers of crop health: evidence and implications. Plant Pathology, 2017, 66, 867-876.	1.2	21
27	SURVEY OF PHALARIS MINOR IN THE INDIAN RICE-WHEAT SYSTEM. Experimental Agriculture, 2003, 39, 253-265.	0.4	19
28	Core-periphery or decentralized? Topological shifts of specialized information on Twitter. Social Networks, 2018, 52, 282-293.	1.3	19
29	Growers' risk perception and trust in control options for huanglongbing citrus-disease in Florida and California. Crop Protection, 2018, 114, 177-186.	1.0	19
30	Title is missing!. European Journal of Plant Pathology, 2000, 106, 11-17.	0.8	18
31	Considerations of Scale in the Analysis of Spatial Pattern of Plant Disease Epidemics. Annual Review of Phytopathology, 2013, 51, 453-472.	3.5	18
32	A Synoptic Analysis of the Temporal and Spatial Aspects of Grapevine Leafroll Disease in a Historic Napa Vineyard and Experimental Vine Blocks. Phytopathology, 2017, 107, 418-426.	1.1	18
33	A Framework for Optimizing Phytosanitary Thresholds in Seed Systems. Phytopathology, 2017, 107, 1219-1228.	1.1	18
34	Phytotoxin production by Alternaria linicola and phytoalexin production by the linseed host. Annals of Applied Biology, 1996, 129, 415-431.	1.3	17
35	Comparison of monitoring- and weather-based risk indicators of botrytis leaf blight of onion and determination of action thresholds. Canadian Journal of Plant Pathology, 2008, 30, 442-456.	0.8	16
36	Analysis of the Spatial Pattern of Strawberry Angular Leaf Spot in California Nursery Production. Phytopathology, 2017, 107, 1243-1255.	1.1	15

NEIL MCROBERTS

#	Article	IF	CITATIONS
37	Institutional approaches for plant health provision as a collective action problem. Food Security, 2021, 13, 273-290.	2.4	14
38	An assessment of genetic diversity within and between populations of Phalaris minor using ISSR markers. Weed Research, 2005, 45, 431-439.	0.8	13
39	Perceived Vulnerability and Propensity to Adopt Best Management Practices for Huanglongbing Disease of Citrus in California. Phytopathology, 2021, 111, 1758-1773.	1.1	12
40	The structure of diagnostic information. Australasian Plant Pathology, 2014, 43, 267-286.	0.5	11
41	Modelling transmission characteristics and epidemic development of the tospovirus–thrip interaction. Arthropod-Plant Interactions, 2015, 9, 107-120.	0.5	11
42	Sugar transport in the light leaf spot pathogen Pyrenopeziza brassicae. FEMS Microbiology Letters, 1996, 143, 285-289.	0.7	10
43	Quantifying the Impacts of Systemic Acquired Resistance to Pitch Canker on Monterey Pine Growth Rate and Hyperspectral Reflectance. Forests, 2016, 7, 20.	0.9	10
44	Closing the extension gap: Information and communication technology in sustainable agriculture. California Agriculture, 2018, 72, 236-242.	0.5	10
45	Coordination of Diagnostic Efforts in the Great Plains: Wheat Virus Survey and Modeling of Disease Onset. Plant Disease, 2016, 100, 1037-1045.	0.7	9
46	Proximal remote sensing to differentiate nonviruliferous and viruliferous insect vectors – proof of concept and importance of input data robustness. Plant Pathology, 2019, 68, 746-754.	1.2	9
47	Out-crossing between genetically modified herbicide-tolerant and other winter oilseed rape cultivars. Plant Genetic Resources: Characterisation and Utilisation, 2006, 4, 96-107.	0.4	8
48	Information Graphs for Binary Predictors. Phytopathology, 2015, 105, 9-17.	1.1	8
49	Canine Olfactory Detection of a Non-Systemic Phytobacterial Citrus Pathogen of International Quarantine Significance. Entropy, 2020, 22, 1269.	1.1	8
50	Assessing linseed (Linum usitatissimum) resistance to Alternaria linicola using a detached cotyledon assay. Annals of Applied Biology, 1995, 127, 263-271.	1.3	7
51	Temperature and light effects on in vitro germination of Peronospora effusa sporangia. Tropical Plant Pathology, 2018, 43, 572-576.	0.8	7
52	First Report of Citrus Leaf Blotch Virus Infecting Bearss Lime Tree in California. Plant Disease, 2020, 104, 3088.	0.7	7
53	Virus surveys of commercial vineyards show value of planting certified vines. California Agriculture, 2019, 73, 90-95.	0.5	7
54	The Evolution of a Process for Selecting and Prioritizing Plant Diseases for Recovery Plans. Plant Disease. 2016, 100, 665-671.	0.7	6

NEIL MCROBERTS

#	Article	IF	CITATIONS
55	Summary Measures of Predictive Power Associated with Logistic Regression Models of Disease Risk. Phytopathology, 2019, 109, 712-715.	1.1	6
56	Identification of the determinants of host resistantce and pathogenicity in interactions between Alternaria linicola Groves & Skolko and Linum Usitatissiumum L. accessions using multivariate analyses. Annals of Applied Biology, 1997, 130, 537-547.	1.3	5
57	Daamen's Incidence–Severity Relationship Revisited. European Journal of Plant Pathology, 2004, 110, 759-761.	0.8	5
58	Using Game Theory to Understand Systemic Acquired Resistance as a Bet-Hedging Option for Increasing Fitness When Disease Is Uncertain. Plants, 2019, 8, 219.	1.6	5
59	Mutual Information as a Performance Measure for Binary Predictors Characterized by Both ROC Curve and PROC Curve Analysis. Entropy, 2020, 22, 938.	1.1	5
60	Cryptic Infection and Systemic Colonization of Leguminous Crops by Verticillium dahliae, the Cause of Verticillium Wilt. Plant Disease, 2019, 103, 3166-3171.	0.7	4
61	Detection of Phytophthora ramorum in Nurseries and Forest Lands in California in 2004 to 2009. Plant Disease, 2016, 100, 139-148.	0.7	3
62	Projecting Monterey Pine (Pinus radiata) Populations over Time in the Presence of Various Representations of Pitch Canker Disease, Caused by Fusarium circinatum. Forests, 2019, 10, 437.	0.9	3
63	Information Graphs Incorporating Predictive Values of Disease Forecasts. Entropy, 2020, 22, 361.	1.1	3
64	Characterization of Pathogen Airborne Inoculum Density by Information Theoretic Analysis of Spore Trap Time Series Data. Entropy, 2020, 22, 1343.	1.1	2
65	Transport of Glutamate and Glutamine in the Light Leaf Spot Pathogen Pyrenopeziza brassicae. Journal of Phytopathology, 1997, 145, 393-395.	0.5	1
66	Environmentally induced changes in the distribution of disease susceptibility phenotypes in Pinus radiata. Forest Pathology, 2019, 49, e12497.	0.5	1
67	First Report of Powdery Mildew of Erodium moschatum Caused by Podosphaera cf. erodii in California. Plant Disease, 2015, 99, 1866-1866.	0.7	0