
Thomas J Dichristina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6443658/publications.pdf Version: 2024-02-01

THOMAS | DICHDISTINA

#	Article	IF	CITATIONS
1	Sulfur-mediated electron shuttling during bacterial iron reduction. Science, 2014, 344, 1039-1042.	12.6	175
2	Dissimilatory Fe(III) and Mn(IV) Reduction by Shewanella putrefaciens Requires ferE, a Homolog of the pulE (gspE) Type II Protein Secretion Gene. Journal of Bacteriology, 2002, 184, 142-151.	2.2	149
3	Anaerobic Respiration of Elemental Sulfur and Thiosulfate by <i>Shewanella oneidensis</i> MR-1 Requires <i>psrA</i> , a Homolog of the <i>phsA</i> Gene of <i>Salmonella enterica</i> Serovar Typhimurium LT2. Applied and Environmental Microbiology, 2009, 75, 5209-5217.	3.1	117
4	Shewanella putrefaciens produces an Fe(III)-solubilizing organic ligand during anaerobic respiration on insoluble Fe(III) oxides. Journal of Inorganic Biochemistry, 2007, 101, 1760-1767.	3.5	102
5	Isolation of U(VI) reduction-deficient mutants ofShewanella putrefaciens. FEMS Microbiology Letters, 2000, 184, 143-148.	1.8	85
6	Microbially Driven Fenton Reaction for Degradation of the Widespread Environmental Contaminant 1,4-Dioxane. Environmental Science & Technology, 2014, 48, 12858-12867.	10.0	77
7	Microbial Mn(IV) reduction requires an initial one-electron reductive solubilization step. Geochimica Et Cosmochimica Acta, 2012, 99, 179-192.	3.9	57
8	Outer Membrane-Associated Serine Protease Involved in Adhesion of <i>Shewanella oneidensis</i> to Fe(III) Oxides. Environmental Science & Technology, 2010, 44, 68-73.	10.0	41
9	Siderophores Are Not Involved in Fe(III) Solubilization during Anaerobic Fe(III) Respiration by <i>Shewanella oneidensis</i> MR-1. Applied and Environmental Microbiology, 2010, 76, 2425-2432.	3.1	39
10	<i>Shewanella oneidensis</i> MRâ€1 mutants selected for their inability to produce soluble organicâ€Fe(III) complexes are unable to respire Fe(III) as anaerobic electron acceptor. Environmental Microbiology, 2010, 12, 938-950.	3.8	38
11	Microbially Driven Fenton Reaction for Transformation of Pentachlorophenol. Environmental Science & Technology, 1999, 33, 1886-1891.	10.0	37
12	Design and application of a rapid screening technique for isolation of selenite reduction-deficient mutants of Shewanella putrefaciens. Microbiological Research, 2000, 155, 79-85.	5.3	30
13	A rapid mutant screening technique for detection of technetium [Tc(VII)] reduction-deficient mutants ofShewanella oneidensisMR-1. FEMS Microbiology Letters, 2006, 259, 282-287.	1.8	30
14	Design and Application of Two Rapid Screening Techniques for Isolation of Mn(IV) Reduction-Deficient Mutants of Shewanella putrefaciens. Applied and Environmental Microbiology, 1998, 64, 2716-2720.	3.1	28
15	Electron transport and protein secretion pathways involved in <scp>Mn</scp> (<scp>III</scp>) reduction by <scp><i>S</i></scp> <i>hewanella oneidensis</i> . Environmental Microbiology Reports, 2014, 6, 490-500.	2.4	27
16	Simultaneous Transformation of Commingled Trichloroethylene, Tetrachloroethylene, and 1,4-Dioxane by a Microbially Driven Fenton Reaction in Batch Liquid Cultures. Applied and Environmental Microbiology, 2016, 82, 6335-6343.	3.1	25
17	ldentification of a molecular signature unique to metal-reducing <i>Gammaproteobacteria</i> . FEMS Microbiology Letters, 2014, 350, 90-99.	1.8	22
18	Direct conversion of cellulose and hemicellulose to fermentable sugars by a microbially-driven Fenton reaction. Bioresource Technology, 2016, 218, 1133-1139.	9.6	20

THOMAS J DICHRISTINA

#	Article	IF	CITATIONS
19	Whole-genome sequencing reveals that Shewanella haliotis Kim et al. 2007 can be considered a later heterotypic synonym of Shewanella algae Simidu et al. 1990. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 1356-1360.	1.7	20
20	Metal Reduction and Protein Secretion Genes Required for Iodate Reduction by Shewanella oneidensis. Applied and Environmental Microbiology, 2019, 85, .	3.1	18
21	Microbial manganese(III) reduction fuelled by anaerobic acetate oxidation. Environmental Microbiology, 2017, 19, 3475-3486.	3.8	17
22	Iodate Reduction by <i>Shewanella oneidensis</i> Does Not Involve Nitrate Reductase. Geomicrobiology Journal, 2018, 35, 570-579.	2.0	17
23	Activation of an Otherwise Silent Xylose Metabolic Pathway in Shewanella oneidensis. Applied and Environmental Microbiology, 2016, 82, 3996-4005.	3.1	16
24	Degradation of the recalcitrant oil spill components anthracene and pyrene by a microbially driven Fenton reaction. FEMS Microbiology Letters, 2017, 364, .	1.8	16
25	A Conserved Histidine in Cytochrome c Maturation Permease CcmB of Shewanella putrefaciens Is Required for Anaerobic Growth below a Threshold Standard Redox Potential. Journal of Bacteriology, 2007, 189, 1036-1043.	2.2	12
26	Dissolution Morphology of Iron (Oxy)(Hydr)Oxides Exposed to the Dissimilatory Iron-Reducing Bacterium <i>Shewanella oneidensis</i> MR-1. Geomicrobiology Journal, 2009, 26, 83-92.	2.0	9
27	Detection of Metalâ€reducing Enzyme Complexes by Scanning Electrochemical Microscopy. Electroanalysis, 2016, 28, 2459-2465.	2.9	7
28	Iodate Reduction by Shewanella oneidensis Requires Genes Encoding an Extracellular Dimethylsulfoxide Reductase. Frontiers in Microbiology, 2022, 13, 852942.	3.5	7
29	Breathing Iron: Molecular Mechanism of Microbial Iron Reduction by <i>Shewanella oneidensis</i> . , 0, , 5.2.1-1-5.2.1-13.		4
30	Isolation of U(VI) reduction-deficient mutants of Shewanella putrefaciens. FEMS Microbiology Letters, 2000, 184, 143-148.	1.8	4
31	Bioextraction (Reductive Dissolution) of Iron from Low-Grade Iron Ores: Fundamental and Applied Studiesa. Annals of the New York Academy of Sciences, 1994, 721, 440-449.	3.8	3
32	Genetic Approaches in Bacteria with No Natural Genetic Systems. , 0, , 581-602.		1
33	Fe(III) Oxide Reduction by Anaerobic Biofilm Formation-DeficientS-Ribosylhomocysteine Lyase (LuxS) Mutant ofShewanella oneidensis. Geomicrobiology Journal, 2019, 36, 639-650.	2.0	0
34	Resistance of Perfluorooctanoic Acid to Degradation by the Microbially-Driven Fenton Reaction. FEMS Microbiology Letters, 2021, , .	1.8	0