Asae Umr Sas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/644354/publications.pdf

Version: 2024-02-01

94 papers 3,959 citations

71102 41 h-index 57 g-index

95 all docs 95 docs citations

95 times ranked 4801 citing authors

#	Article	IF	Citations
1	Transit times—the link between hydrology and water quality at the catchment scale. Wiley Interdisciplinary Reviews: Water, 2016, 3, 629-657.	6.5	184
2	Management, regulation and environmental impacts of nitrogen fertilization in northwestern Europe under the Nitrates Directive; a benchmark study. Biogeosciences, 2012, 9, 5143-5160.	3.3	162
3	Life Cycle Assessment for environmentally sustainable aquaculture management: a case study of combined aquaculture systems for carp and tilapia. Journal of Cleaner Production, 2013, 57, 249-256.	9.3	104
4	Soil quality in Life Cycle Assessment: Towards development of an indicator. Ecological Indicators, 2012, 18, 434-442.	6.3	102
5	Greenhouse gas mitigation in animal production: towards an integrated life cycle sustainability assessment. Current Opinion in Environmental Sustainability, 2011, 3, 423-431.	6.3	97
6	Environmental impacts of French and Brazilian broiler chicken production scenarios: An LCA approach. Journal of Environmental Management, 2014, 133, 222-231.	7.8	94
7	Environmental impacts of plant-based salmonid diets at feed and farm scales. Aquaculture, 2011, 321, 61-70.	3.5	93
8	Farming system design for innovative crop-livestock integration in Europe. Animal, 2014, 8, 1204-1217.	3.3	85
9	Evaluation of the environmental implications of the incorporation of feed-use amino acids in pig production using Life Cycle Assessment. Livestock Science, 2014, 161, 158-175.	1.6	80
10	Solute transport dynamics in small, shallow groundwater-dominated agricultural catchments: insights from a high-frequency, multisolute 10 yr-long monitoring study. Hydrology and Earth System Sciences, 2013, 17, 1379-1391.	4.9	79
11	Enteric methane production and greenhouse gases balance of diets differing in concentrate in the fattening phase of a beef production system1. Journal of Animal Science, 2011, 89, 2518-2528.	0.5	78
12	LCA and emergy accounting of aquaculture systems: Towards ecological intensification. Journal of Environmental Management, 2013, 121, 96-109.	7.8	78
13	Spatial differentiation in Life Cycle Assessment LCA applied to an agricultural territory: current practices and method development. Journal of Cleaner Production, 2016, 112, 2472-2484.	9.3	76
14	Water use by livestock: A global perspective for a regional issue?. Animal Frontiers, 2012, 2, 9-16.	1.7	72
15	Effects of type of ration and allocation methods on the environmental impacts of beef-production systems. Livestock Science, 2012, 145, 239-251.	1.6	72
16	Best available technology for European livestock farms: Availability, effectiveness and uptake. Journal of Environmental Management, 2016, 166, 1-11.	7.8	71
17	Linking microbial community to soil water-stable aggregation during crop residue decomposition. Soil Biology and Biochemistry, 2012, 50, 126-133.	8.8	66
18	Environmental impacts of dairy system intensification: the functional unit matters!. Journal of Cleaner Production, 2017, 140, 445-454.	9.3	65

#	Article	IF	Citations
19	Evaluation of the environmental implications of the incorporation of feed-use amino acids in the manufacturing of pig and broiler feeds using Life Cycle Assessment. Animal, 2011, 5, 1972-1983.	3.3	60
20	Influence of water temperature on the economic value of growth rate in fish farming: The case of sea bass (Dicentrarchus labrax) cage farming in the Mediterranean. Aquaculture, 2016, 462, 47-55.	3.5	57
21	Influence of emission-factor uncertainty and farm-characteristic variability in LCA estimates of environmental impacts of French dairy farms. Journal of Cleaner Production, 2014, 81, 150-157.	9.3	55
22	Environmental impacts of genetic improvement of growth rate and feed conversion ratio in fish farming under rearing density and nitrogen output limitations. Journal of Cleaner Production, 2016, 116, 100-109.	9.3	55
23	ECOALIM: A Dataset of Environmental Impacts of Feed Ingredients Used in French Animal Production. PLoS ONE, 2016, 11, e0167343.	2.5	52
24	Effect of dairy production system, breed and co-product handling methods onÂenvironmental impacts at farm level. Journal of Environmental Management, 2013, 120, 127-137.	7.8	50
25	Comparative environmental performance of artisanal and commercial feed use in Peruvian freshwater aquaculture. Aquaculture, 2015, 435, 52-66.	3.5	50
26	Environmental assessment of seabass (Dicentrarchus labrax) and seabream (Sparus aurata) farming from a life cycle perspective: A case study of a Tunisian aquaculture farm. Aquaculture, 2017, 471, 204-212.	3.5	50
27	The Use of Reference Values in Indicator-Based Methods for the Environmental Assessment of Agricultural Systems. Sustainability, 2011, 3, 424-442.	3.2	49
28	Evaluation of SPOT imagery for the estimation of grassland biomass. International Journal of Applied Earth Observation and Geoinformation, 2015, 38, 72-77.	2.8	49
29	The use of benthic invertebrate community and water quality analyses to assess ecological consequences of fish farm effluents in rivers. Ecological Indicators, 2012, 23, 356-365.	6.3	48
30	Influence of rearing conditions and manure management practices on ammonia and greenhouse gas emissions from poultry houses. World's Poultry Science Journal, 2011, 67, 441-456.	3.0	47
31	Environmental impacts of farms integrating aquaculture and agriculture in Cameroon. Journal of Cleaner Production, 2012, 28, 208-214.	9.3	47
32	SyNE: An improved indicator to assess nitrogen efficiency of farming systems. Agricultural Systems, 2014, 127, 41-52.	6.1	46
33	Life cycle assessment (LCA) of two rearing techniques of sea bass (Dicentrarchus labrax). Aquacultural Engineering, 2012, 46, 1-9.	3.1	45
34	Life cycle assessment applied to pea-wheat intercrops: A new method for handling the impacts of co-products. Journal of Cleaner Production, 2014, 73, 80-87.	9.3	45
35	Methods to simplify diet and food life cycle inventories: Accuracy versus data-collection resources. Journal of Cleaner Production, 2017, 140, 410-420.	9.3	45
36	Differential and successive effects of residue quality and soil mineral N on water-stable aggregation during crop residue decomposition. Soil Biology and Biochemistry, 2011, 43, 1955-1960.	8.8	44

#	Article	IF	Citations
37	A guide for choosing the most appropriate method for multi-criteria assessment of agricultural systems according to decision-makers' expectations. Agricultural Systems, 2013, 115, 51-62.	6.1	44
38	Exploring sustainable farming scenarios at a regional scale: an application to dairy farms in Brittany. Journal of Cleaner Production, 2012, 28, 160-167.	9.3	43
39	AGRIBALYSE $<$ sup $>$ \hat{A}^{\otimes} $<$ /sup $>$, the French LCI Database for agricultural products: high quality data for producers and environmental labelling. OCL - Oilseeds and Fats, Crops and Lipids, 2015, 22, D104.	1.4	43
40	Using environmental constraints to formulate low-impact poultry feeds. Journal of Cleaner Production, 2012, 28, 215-224.	9.3	42
41	Exploring variability in methods and data sensitivity in carbon footprints of feed ingredients. International Journal of Life Cycle Assessment, 2013, 18, 768-782.	4.7	42
42	Earthworm effects on gaseous emissions during vermifiltration of pig fresh slurry. Bioresource Technology, 2011, 102, 3679-3686.	9.6	41
43	Reconciling technical, economic and environmental efficiency of farming systems in vulnerable areas. Agriculture, Ecosystems and Environment, 2012, 147, 89-99.	5.3	41
44	Sensitivity Analysis of Environmental Process Modeling in a Life Cycle Context: A Case Study of Hemp Crop Production. Journal of Industrial Ecology, 2015, 19, 978-993.	5.5	40
45	Modelling heat and mass transfer of a broiler house using computational fluid dynamics. Biosystems Engineering, 2015, 136, 25-38.	4.3	38
46	Infrared photoacoustic spectroscopy in animal houses: Effect of non-compensated interferences on ammonia, nitrous oxide and methane air concentrations. Biosystems Engineering, 2013, 114, 318-326.	4.3	37
47	Modelling nitrogen and carbon interactions in composting of animal manure in naturally aerated piles. Waste Management, 2015, 46, 588-598.	7.4	37
48	Soil C and N models that integrate microbial diversity. Environmental Chemistry Letters, 2016, 14, 331-344.	16.2	37
49	Economic value as a functional unit for environmental labelling of food and other consumer products. Journal of Cleaner Production, 2015, 94, 394-397.	9.3	34
50	Environmental assessment of trout farming in France by life cycle assessment: using bootstrapped principal component analysis to better define system classification. Journal of Cleaner Production, 2015, 87, 87-95.	9.3	34
51	Data strategy for environmental assessment of agricultural regions via LCA: case study of a French catchment. International Journal of Life Cycle Assessment, 2016, 21, 476-491.	4.7	32
52	Highâ€resolution mapping of soil phosphorus concentration in agricultural landscapes with readily available or detailed survey data. European Journal of Soil Science, 2017, 68, 281-294.	3.9	30
53	Environmental performance of brackish water polyculture system from a life cycle perspective: A Filipino case study. Aquaculture, 2015, 435, 217-227.	3.5	29
54	Stockless organic farming: strengths and weaknesses evidenced by a multicriteria sustainability assessment model. Agronomy for Sustainable Development, 2013, 33, 593-608.	5.3	28

#	Article	IF	CITATIONS
55	Earthworm (Eisenia fetida) behavioral and respiration responses to sublethal mercury concentrations in an artificial soil substrate. Applied Soil Ecology, 2016, 104, 48-53.	4.3	28
56	Development of a soil compaction indicator in life cycle assessment. International Journal of Life Cycle Assessment, 2013, 18, 1316-1324.	4.7	27
57	Agricultural practices in grasslands detected by spatial remote sensing. Environmental Monitoring and Assessment, 2014, 186, 8249-8265.	2.7	27
58	CASIMOD'N: An agro-hydrological distributed model of catchment-scale nitrogen dynamics integrating farming system decisions. Agricultural Systems, 2013, 118, 41-51.	6.1	26
59	Accounting for farm diversity in Life Cycle Assessment studies – the case of poultry production in a tropical island. Journal of Cleaner Production, 2013, 57, 280-292.	9.3	26
60	Effect of production quotas on economic and environmental values of growth rate and feed efficiency in sea cage fish farming. PLoS ONE, 2017, 12, e0173131.	2.5	26
61	Relative nitrogen efficiency, a new indicator to assess crop livestock farming systems. Agronomy for Sustainable Development, 2015, 35, 857-868.	5 . 3	24
62	â€l am an Intensive Guy': The Possibility and Conditions of Reconciliation Through the Ecological Intensification Framework. Environmental Management, 2015, 56, 1184-1198.	2.7	24
63	Consequential LCA of switching from maize silage-based to grass-based dairy systems. International Journal of Life Cycle Assessment, 2013, 18, 1470-1484.	4.7	22
64	Modelling the interplay between nitrogen cycling processes and mitigation options in farming catchments. Journal of Agricultural Science, 2015, 153, 959-974.	1.3	22
65	Comparing environmental impacts of native and introduced freshwater prawn farming in Brazil and the influence of better effluent management using LCA. Aquaculture, 2015, 444, 151-159.	3 . 5	22
66	Indicators to evaluate agricultural nitrogen efficiency of the 27 member states of the European Union. Ecological Indicators, 2016, 66, 612-622.	6.3	22
67	Computational modelling of thermal and humidity gradients for a naturally ventilated poultry house. Biosystems Engineering, 2016, 151, 273-285.	4.3	22
68	Modeling the potential benefits of catch-crop introduction in fodder crop rotations in a Western Europe landscape. Science of the Total Environment, 2012, 437, 276-284.	8.0	21
69	A new method of biophysical allocation in LCA of livestock co-products: modeling metabolic energy requirements of body-tissue growth. International Journal of Life Cycle Assessment, 2017, 22, 883-895.	4.7	21
70	Environmental Life Cycle Assessment of Diets with Improved Omega-3 Fatty Acid Profiles. PLoS ONE, 2016, 11, e0160397.	2.5	21
71	Assessing aquaculture sustainability: a comparative methodology. International Journal of Sustainable Development and World Ecology, 2014, 21, 503-511.	5 . 9	20
72	Five propositions to harmonize environmental footprints of food and beverages. Journal of Cleaner Production, 2017, 153, 457-464.	9.3	20

#	Article	IF	CITATIONS
73	Life Cycle Assessment as applied to environmental choices regarding farmed or wild-caught fish CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-10.	1.0	20
74	Emergy evaluation of contrasting dairy systems at multiple levels. Journal of Environmental Management, 2013, 129, 44-53.	7.8	19
75	Contrasting the spatial management of nitrogen and phosphorus for improved water quality: Modelling studies in New Zealand and France. European Journal of Agronomy, 2014, 57, 52-61.	4.1	18
76	Product carbon footprinting in Thailand: A step towards sustainable consumption and production?. Environmental Development, 2012, 3, 100-108.	4.1	17
77	Antioxidant and behavior responses of earthworms after introduction to a simulated vermifilter environment. Ecological Engineering, 2015, 81, 218-227.	3.6	17
78	Microbial Diversity Indexes Can Explain Soil Carbon Dynamics as a Function of Carbon Source. PLoS ONE, 2016, 11, e0161251.	2.5	17
79	Effect of farming practices for greenhouse gas mitigation and subsequent alternative land use on environmental impacts of beef cattle production systems. Animal, 2013, 7, 860-869.	3.3	15
80	Construction cost of plant compounds provides a physical relationship for co-product allocation in life cycle assessment. International Journal of Life Cycle Assessment, 2015, 20, 777-784.	4.7	15
81	Characterisation of waste output from flow-through trout farms in France: comparison of nutrient mass-balance modelling and hydrological methods. Aquatic Living Resources, 2011, 24, 63-70.	1.2	14
82	Improved Environmental Life Cycle Assessment of Crop Production at the Catchment Scale via a Process-Based Nitrogen Simulation Model. Environmental Science & Environmental Science, 2015, 49, 10790-10796.	10.0	14
83	Changes during winter in waterâ€stable aggregation due to crop residue quality. Soil Use and Management, 2012, 28, 590-595.	4.9	12
84	LCA Food 2012â€"towards sustainable food systems. International Journal of Life Cycle Assessment, 2013, 18, 1180-1183.	4.7	10
85	Life cycle assessment of three bull-fattening systems: effect of impact categories on ranking. Journal of Agricultural Science, 2012, 150, 755-763.	1.3	9
86	Design of an integrated piggery system with recycled water, biomass production and water purification by vermiculture, macrophyte ponds and constructed wetlands. Water Science and Technology, 2011, 63, 1314-1320.	2.5	8
87	Estimating environmental impacts of agricultural systems with LCA using data from the French Farm Accountancy Data Network (FADN). Cahiers Agricultures, 2012, 21, 248-257.	0.9	8
88	Greenhouse gas emissions from the grassy outdoor run of organic broilers. Biogeosciences, 2012, 9, 1493-1508.	3.3	7
89	Using reference values to assess environmental sustainability of dairy farms. Renewable Agriculture and Food Systems, 2012, 27, 217-227.	1.8	6
90	Prediction of nutrient flows with potential impacts on the environment in a rabbit farm: a modelling approach. Animal Production Science, 2014, 54, 2042.	1.3	6

#	Article	IF	CITATION
91	Sustainability of fish pond culture in rural farming systems of Central and Western Cameroon. International Journal of Agricultural Sustainability, 2017, 15, 208-222.	3.5	6
92	Responses of the earthworm <i>Eisenia andrei</i> exposed to sublethal aluminium levels in an artificial soil substrate. Chemistry and Ecology, 2014, 30, 611-621.	1.6	4
93	Influence of season and outdoor run characteristics on excretion behaviour of organic broilers and gaseous emissions. Biosystems Engineering, 2015, 139, 35-47.	4.3	4
94	Freins et motivations à la diversification des cultures dans les exploitations agricoles : étude de cas en Vendée. OCL - Oilseeds and Fats, Crops and Lipids, 2013, 20, D405.	1.4	2