Laura Fedele

List of Publications by Citations

Source: https://exaly.com/author-pdf/6443487/laura-fedele-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

85
papers

2,276
citations

26
h-index
g-index

87
ext. papers

2,609
ext. citations

3.3
solutions

5.05
L-index

#	Paper	IF	Citations
85	Viscosity and thermal conductivity measurements of water-based nanofluids containing titanium oxide nanoparticles. <i>International Journal of Refrigeration</i> , 2012 , 35, 1359-1366	3.8	189
84	Viscosity of water based SWCNH and TiO2 nanofluids. <i>Experimental Thermal and Fluid Science</i> , 2012 , 36, 65-71	3	142
83	Experimental stability analysis of different water-based nanofluids. <i>Nanoscale Research Letters</i> , 2011 , 6, 300	5	138
82	Nano-PCMs for enhanced energy storage and passive cooling applications. <i>Applied Thermal Engineering</i> , 2017 , 110, 584-589	5.8	132
81	Adoption of nanofluids in low-enthalpy parabolic trough solar collectors: Numerical simulation of the yearly yield. <i>Energy Conversion and Management</i> , 2016 , 118, 306-319	10.6	82
80	Low GWP halocarbon refrigerants: A review of thermophysical properties. <i>International Journal of Refrigeration</i> , 2018 , 90, 181-201	3.8	74
79	Influence of nanoparticles dispersion in POE oils on lubricity and R134a solubility. <i>International Journal of Refrigeration</i> , 2010 , 33, 1180-1186	3.8	63
78	Heat Transfer Capability of (Ethylene Glycol + Water)-Based Nanofluids Containing Graphene Nanoplatelets: Design and Thermophysical Profile. <i>Nanoscale Research Letters</i> , 2017 , 12, 53	5	54
77	Saturated Pressure Measurements of 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf) for Reduced Temperatures Ranging from 0.67 to 0.93. <i>Journal of Chemical & Data, Engineering Data, 2011</i> , 56, 2608-2	612	51
76	Investigation of a single wall carbon nanohorn-based nanofluid in a full-scale direct absorption parabolic trough solar collector. <i>Energy Conversion and Management</i> , 2017 , 150, 693-703	10.6	45
75	Water-Based Fe2O3 Nanofluid Characterization: Thermal Conductivity and Viscosity Measurements and Correlation. <i>Advances in Mechanical Engineering</i> , 2012 , 4, 674947	1.2	45
74	Saturated Pressure Measurements of trans-1,3,3,3-Tetrafluoroprop-1-ene (R1234ze(E)) for Reduced Temperatures Ranging from 0.58 to 0.92. <i>Journal of Chemical & Data</i> , 2012, 57, 2197-2202	2.8	44
73	New Measurements of the Apparent Thermal Conductivity of Nanofluids and Investigation of Their Heat Transfer Capabilities. <i>Journal of Chemical & Engineering Data</i> , 2017 , 62, 491-507	2.8	43
72	Effect of solvent on nanolime transport within limestone: How to improve in-depth deposition. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2016 , 497, 171-181	5.1	41
71	Saturated pressure measurements of 3,3,3-trifluoroprop-1-ene (R1243zf) for reduced temperatures ranging from 0.62 to 0.98. <i>Fluid Phase Equilibria</i> , 2013 , 351, 48-52	2.5	40
70	Compressed Liquid Density Measurements for 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf). <i>Journal of Chemical & Che</i>	2.8	39
69	Isothermal vaporliquid equilibrium for the three binary systems 1,1,1,2,3,3-hexafluoropropane with dimethyl ether or propane, and 1,1,1,3,3,3-hexafluoropropane with dimethyl ether. <i>Fluid Phase Equilibria</i> , 2000 , 174, 3-12	2.5	37

(2017-2017)

68	PEG 400-Based Phase Change Materials Nano-Enhanced with Functionalized Graphene Nanoplatelets. <i>Nanomaterials</i> , 2017 , 8,	5.4	36
67	R1234yf as a substitute of R134a in automotive air conditioning. Solubility measurements in two commercial PAG oils. <i>International Journal of Refrigeration</i> , 2014 , 40, 302-308	3.8	36
66	Transport properties and heat transfer coefficients of ZnO/(ethylene glycol + water) nanofluids. <i>International Journal of Heat and Mass Transfer</i> , 2015 , 89, 433-443	4.9	34
65	Isothermal VLE measurements for the binary mixtures HFC-134a + HFC-245fa and HC-600a + HFC-245fa. <i>Fluid Phase Equilibria</i> , 2001 , 185, 255-264	2.5	34
64	Solubility of carbon dioxide in 2-methylbutyric, 2-methylvaleric and 2-methylhexanoic ester oils. <i>Fluid Phase Equilibria</i> , 2007 , 256, 81-85	2.5	33
63	Measurements and Correlations of cis-1,3,3,3-Tetrafluoroprop-1-ene (R1234ze(Z)) Saturation Pressure. <i>International Journal of Thermophysics</i> , 2014 , 35, 1-12	2.1	32
62	Subcooled liquid density measurements and PvT measurements in the vapor phase for 3,3,3-trifluoroprop-1-ene (R1243zf). <i>International Journal of Refrigeration</i> , 2013 , 36, 2209-2215	3.8	32
61	Hydrogen-bonding of HFCs with dimethyl ether: evaluation by isothermal VLE measurements. <i>Fluid Phase Equilibria</i> , 2002 , 199, 153-160	2.5	32
60	Development of paraffinic phase change material nanoemulsions for thermal energy storage and transport in low-temperature applications. <i>Applied Thermal Engineering</i> , 2019 , 159, 113868	5.8	29
59	Subcooled Liquid Density Measurements and PvT Measurements in the Vapor Phase for trans-1,3,3,3-Tetrafluoroprop-1-ene (R1234ze(E)). <i>Journal of Chemical & Data</i> , 2012, 57, 3710-3720	2.8	26
58	VLE measurements and modeling for the strongly positive azeotropic R32+propane system. <i>Fluid Phase Equilibria</i> , 2002 , 199, 175-183	2.5	26
57	Matrix-assisted laser desorption/ionization mass spectrometry for monitoring bacterial protein digestion in yogurt production. <i>Journal of Mass Spectrometry</i> , 1999 , 34, 1338-45	2.2	25
56	Laminar mixed convection of TiO 2 Water nanofluid in horizontal uniformly heated pipe flow. <i>International Journal of Thermal Sciences</i> , 2015 , 97, 26-40	4.1	24
55	A preliminary investigation on nanohorn toxicity in marine mussels and polychaetes. <i>Science of the Total Environment</i> , 2014 , 468-469, 111-9	10.2	23
54	Nano-encapsulated PCM emulsions prepared by a solvent-assisted method for solar applications. <i>Solar Energy Materials and Solar Cells</i> , 2019 , 194, 268-275	6.4	23
53	Solubility Measurements and Data Correlation of Carbon Dioxide in Pentaerythritol Tetrahexanoate (PEC6). <i>Journal of Chemical & Engineering Data</i> , 2008 , 53, 2581-2585	2.8	21
52	Nano-Phase Change Materials for Electronics Cooling Applications. <i>Journal of Heat Transfer</i> , 2017 , 139,	1.8	20
51	Saturated Pressure Measurements of trans-1-Chloro-3,3,3-trifluoroprop-1-ene (R1233zd(E)). Journal of Chemical & Chemical	2.8	20

50	Effect of external magnetic field on tribological properties of goethite (a-FeOOH) based nanofluids. <i>Tribology International</i> , 2018 , 127, 341-350	4.9	20
49	PIExperimental Measurements and Data Correlation of Pentaerythritol Esters. <i>Journal of Chemical & Data</i> , 2007 , 52, 108-115	2.8	20
48	Isothermal vapour + liquid equilibrium measurements and correlation for the dimethyl ether + 1,1,1,2,3,3,3-heptafluoropropane and the propane + 1,1,1,2,3,3,3-heptafluoropropane systems. <i>Fluid Phase Equilibria</i> , 2004 , 224, 119-123	2.5	20
47	Vapor l liquid Equilibrium Measurements and Correlation of the Binary Refrigerant Mixture Propane (HC-290) + 1,1,1,2,3,3,3-Heptafluoropropane (HFC-227ea) at 278.15, 293.15, and 308.15 K. <i>Journal of Chemical & Engineering Data</i> , 2002 , 47, 839-842	2.8	20
46	NePCM Based on Silver Dispersions in Poly(Ethylene Glycol) as a Stable Solution for Thermal Storage. <i>Nanomaterials</i> , 2019 , 10,	5.4	20
45	Surface oxidation of single wall carbon nanohorns for the production of surfactant free water-based colloids. <i>Journal of Colloid and Interface Science</i> , 2018 , 514, 528-533	9.3	18
44	Solubility of carbon dioxide in pentaerythritol tetraoctanoate. Fluid Phase Equilibria, 2009, 277, 55-60	2.5	18
43	Dynamic Viscosity, Surface Tension and Wetting Behavior Studies of ParaffinInIwater NanoEmulsions. <i>Energies</i> , 2019 , 12, 3334	3.1	17
42	Solubility of Carbon Dioxide in Pentaerythritol Tetrabutyrate (PEC4) and Comparison with Other Linear Chained Pentaerythritol Tetraalkyl Esters. <i>International Journal of Thermophysics</i> , 2009 , 30, 1144	- 11 54	17
41	Isothermal VLE Measurements for Difluoromethane + Dimethyl Ether and an Evaluation of Hydrogen Bonding. <i>Journal of Chemical & Engineering Data</i> , 2005 , 50, 128-132	2.8	17
40	Energetic and Exergetic Analysis of Low Global Warming Potential Refrigerants as Substitutes for R410A in Ground Source Heat Pumps. <i>Energies</i> , 2019 , 12, 3538	3.1	16
39	Experimental and Numerical Investigation on Forced Convection in Circular Tubes With Nanofluids. <i>Heat Transfer Engineering</i> , 2016 , 37, 1201-1210	1.7	16
38	Measurements and Correlations of cis-1,3,3,3-Tetrafluoroprop-1-ene (R1234ze(Z)) Subcooled Liquid Density and Vapor-Phase PvT. <i>International Journal of Thermophysics</i> , 2014 , 35, 1415-1434	2.1	16
37	Compressed Liquid Densities and Saturated Liquid Densities of Dimethyl Ether (RE170). <i>Journal of Chemical & Description of Chemical & Description (RE170)</i> . <i>Journal of Chemical & Description (RE170)</i> .	2.8	15
36	Vapor+Liquid Equilibrium Measurements and Correlation of the Binary Refrigerant Mixtures Difluoromethane (HFC-32)+1,1,1,2,3,3-Hexafluoropropane (HFC-236ea) and Pentafluoroethane (HFC-125)+1,1,1,2,3,3-Hexafluoropropane (HFC-236ea) at 288.6, 303.2, and 318.2 K. <i>International</i>	2.1	14
35	Journal of Thermophysics, 2000, 21, 781-791 Saturated pressure measurements of cis-pentafluoroprop-1-ene (R1225ye(Z)). International Journal of Refrigeration, 2016, 69, 243-250	3.8	14
34	Compressed Liquid Density Measurements for 1,1,1,2,3,3,3-Heptafluoropropane (R227ea). <i>Journal of Chemical & Data</i> , 2007 , 52, 1955-1959	2.8	13
33	Vaporliquid Equilibrium for the Difluoromethane (R32) +n-Butane (R600) System. <i>Journal of Chemical & Chemical</i>	2.8	13

(2003-2004)

32	Compressed liquid densities and saturated liquid densities of HFC-365mfc. <i>Fluid Phase Equilibria</i> , 2004 , 222-223, 291-296	2.5	13
31	Vapourllquid equilibrium measurements and correlation for the pentafluoroethane (R125)+n-butane (R600) system. <i>Fluid Phase Equilibria</i> , 2005 , 227, 275-281	2.5	12
30	Characterization and Simulation of the Heat Transfer Behaviour of Water-Based ZnO Nanofluids. Journal of Nanoscience and Nanotechnology, 2015 , 15, 3599-609	1.3	11
29	Solubility measurements and correlation of carbon dioxide in pentaerythritol tetra-2-methylhexanoate. Comparison with other pentaerythritol esters. <i>Fluid Phase Equilibria</i> , 2010 , 290, 115-120	2.5	11
28	Mutual solubility and VLLE correlation for the R32 + R290 system. Fluid Phase Equilibria, 2003, 212, 245	-255	11
27	Compressed Liquid Densities, Saturated Liquid Densities, and Vapor Pressures of Hexafluoro-1,3-butadiene (C4F6). <i>Journal of Chemical & Engineering Data</i> , 2002 , 47, 179-182	2.8	11
26	Tuning the thermal diffusivity of silver based nanofluids by controlling nanoparticle aggregation. <i>Nanotechnology</i> , 2013 , 24, 365601	3.4	10
25	Solubility Temperature Dependence and Data Correlation of Carbon Dioxide in Pentaerythritol Tetra-2-methylbutyrate. <i>Journal of Chemical & Engineering Data</i> , 2009 , 54, 3104-3107	2.8	10
24	Compressed Liquid Density and Vapor Phase PvT Measurements of trans-1-Chloro-3,3,3-trifluoroprop-1-ene [R1233zd(E)]. <i>Journal of Chemical & Data</i> , 2018, 63, 225-232	2.8	9
23	Compressed Liquid Density and Vapor Phase PvT Measurements of cis-1,2,3,3,3-Pentafluoroprop-1-ene (R1225ye(Z)). <i>Journal of Chemical & Data</i> , 2015, 60, 3333-3340	2.8	9
22	Air velocity distribution analysis in the air duct of a display cabinet by PIV technique. <i>International Journal of Refrigeration</i> , 2012 , 35, 2321-2331	3.8	9
21	Nanofluids characterization and application as nanolubricants in heat pump systems. <i>Science and Technology for the Built Environment</i> , 2015 , 21, 621-630	1.8	8
20	A comparison of nanofluid thermal conductivity measurements by flash and hot disk techniques. Journal of Physics: Conference Series, 2014 , 547, 012046	0.3	8
19	Isothermal vapour + liquid equilibrium measurements and correlation for the pentafluoroethane + cyclopropane and the cyclopropane + 1,1,1,2-tetrafluoroethane binary systems. <i>Fluid Phase Equilibria</i> , 2007 , 251, 41-46	2.5	8
18	Qualitative characterization of bacterial strains employed in the production of yogurt by matrix-assisted laser desorption/ionization mass spectrometry. <i>Journal of Mass Spectrometry</i> , 1999 , 34, 1385-8	2.2	8
17	Nano-PCMs for passive electronic cooling applications. <i>Journal of Physics: Conference Series</i> , 2015 , 655, 012030	0.3	7
16	VLLE measurements and correlation for the pentafluoroethane (R125) + n-butane (R600) system. <i>Fluid Phase Equilibria</i> , 2004 , 222-223, 283-289	2.5	7
15	VLLE measurements and their correlation for the R32 + R600 system. <i>Fluid Phase Equilibria</i> , 2003 , 210, 45-56	2.5	7

14	Experimental measurement of equilibrium vapour pressure of H2O/KCOOH (potassium formate) solution at high concentration. <i>International Journal of Refrigeration</i> , 2018 , 93, 176-183	3.8	6
13	Solubility Measurements and Data Correlation of Carbon Dioxide in Pentaerythritol Tetra(2-ethylbutanoate) (PEBE6). <i>Journal of Chemical & Data</i> , 2011, 56, 62-64	2.8	6
12	Correction to New Measurements of the Apparent Thermal Conductivity of Nanofluids and Investigation of Their Heat Transfer Capabilities <i>Journal of Chemical & Data, 2018</i> , 63, 4277-4279	2.8	4
11	Review on phase change material emulsions for advanced thermal management: Design, characterization and thermal performance. <i>Renewable and Sustainable Energy Reviews</i> , 2022 , 159, 11223	38 ^{6.2}	4
10	HCFO refrigerant cis-1-chloro-2,3,3,3 tetrafluoropropene [R1224yd(Z)]: Experimental assessment and correlation of the liquid density. <i>International Journal of Refrigeration</i> , 2020 , 118, 139-145	3.8	3
9	Temperature and Pressure Dependence of Branched Pentaerythritol Ester Density. <i>Journal of Chemical & Chemical</i>	2.8	3
8	Analysis of the Parameters Required to Properly Define Nanofluids for Heat Transfer Applications. <i>Fluids</i> , 2021 , 6, 65	1.6	3
7	Nano-PCMs for Electronics Cooling Applications 2016 ,		2
7	Investigation of Nanofluids Circulating in a Volumetric Solar Receiver, Journal of Thermal Science	1.9	2
	Investigation of Nanofluids Circulating in a Volumetric Solar Receiver. <i>Journal of Thermal Science and Engineering Applications</i> , 2021 , 13, Saturated Pressure Measurements of cis-1-Chloro-2 3 3 3- tetrafluoropropene (R1224vd (7))	1.9 2.8	
6	Investigation of Nanofluids Circulating in a Volumetric Solar Receiver. <i>Journal of Thermal Science and Engineering Applications</i> , 2021 , 13, Saturated Pressure Measurements of cis-1-Chloro-2,3,3,3- tetrafluoropropene (R1224yd (Z)) Saturation Pressure. <i>Journal of Chemical & Data</i> , 2020 , 65, 4263-4267 Numerical analyses and tests for optimized and enhanced heat transfer solutions in DEMO. <i>Fusion</i>		2
6 5	Investigation of Nanofluids Circulating in a Volumetric Solar Receiver. <i>Journal of Thermal Science and Engineering Applications</i> , 2021 , 13, Saturated Pressure Measurements of cis-1-Chloro-2,3,3,3- tetrafluoropropene (R1224yd (Z)) Saturation Pressure. <i>Journal of Chemical & Data</i> , 2020 , 65, 4263-4267 Numerical analyses and tests for optimized and enhanced heat transfer solutions in DEMO. <i>Fusion Engineering and Design</i> , 2019 , 146, 2692-2697 State of the Art. Perspective and Obstacles of Ground-Source Heat Pump Technology in the	2.8	2
6 5 4	Investigation of Nanofluids Circulating in a Volumetric Solar Receiver. <i>Journal of Thermal Science and Engineering Applications</i> , 2021 , 13, Saturated Pressure Measurements of cis-1-Chloro-2,3,3,3- tetrafluoropropene (R1224yd (Z)) Saturation Pressure. <i>Journal of Chemical & Data</i> , 2020 , 65, 4263-4267 Numerical analyses and tests for optimized and enhanced heat transfer solutions in DEMO. <i>Fusion Engineering and Design</i> , 2019 , 146, 2692-2697 State of the Art, Perspective and Obstacles of Ground-Source Heat Pump Technology in the European Building Sector: A Review. <i>Energies</i> , 2022 , 15, 2685 Development and Thermophysical Profile of Cetyl Alcohol-in-Water Nanoemulsions for Thermal	2.8	1