Shay Soker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6443414/publications.pdf Version: 2024-02-01

SHAV SOKED

#	Article	IF	CITATIONS
1	Bioreactor design and validation for manufacturing strategies in tissue engineering. Bio-Design and Manufacturing, 2022, 5, 43-63.	3.9	21
2	Exploiting maleimide-functionalized hyaluronan hydrogels to test cellular responses to physical and biochemical stimuli. Biomedical Materials (Bristol), 2022, 17, 025001.	1.7	4
3	Biofabricated <scp>3D</scp> in vitro model of fibrosisâ€induced abnormal hepatoblast/biliary progenitors' expansion of the developing liver. Bioengineering and Translational Medicine, 2021, 6, e10207.	3.9	4
4	lmmunoâ€Reactive Cancer Organoid Models to Examine Microbiome Metabolite Effects on Immune Checkpoint Blockade Efficacy. FASEB Journal, 2021, 35, .	0.2	0
5	Abstract 2964: Immuno-reactive cancer organoid models to examine microbiome metabolite effects on immune checkpoint blockade efficacy. , 2021, , .		0
6	Bio-instructive hydrogel expands the paracrine potency of mesenchymal stem cells. Biofabrication, 2021, 13, 045002.	3.7	32
7	Cell Viability Assays in Three-Dimensional Hydrogels: A Comparative Study of Accuracy. Tissue Engineering - Part C: Methods, 2021, 27, 401-410.	1.1	23
8	Semiconducting polymer nanoparticles for photothermal ablation of colorectal cancer organoids. Scientific Reports, 2021, 11, 1532.	1.6	15
9	Development of a Colorectal Cancer 3D Micro-tumor Construct Platform From Cell Lines and Patient Tumor Biospecimens for Standard-of-Care and Experimental Drug Screening. Annals of Biomedical Engineering, 2020, 48, 940-952.	1.3	29
10	Decellularized Skin Extracellular Matrix (dsECM) Improves the Physical and Biological Properties of Fibrinogen Hydrogel for Skin Bioprinting Applications. Nanomaterials, 2020, 10, 1484.	1.9	41
11	Manipulating the Tumor Microenvironment in Tumor Organoids Induces Phenotypic Changes and Chemoresistance. IScience, 2020, 23, 101851.	1.9	24
12	Bioengineered tumor organoids. Current Opinion in Biomedical Engineering, 2020, 13, 168-173.	1.8	12
13	Differential fibrotic phenotypes of hepatic stellate cells within 3D liver organoids. Biotechnology and Bioengineering, 2020, 117, 2516-2526.	1.7	10
14	Simulating the human colorectal cancer microenvironment in 3D tumor-stroma co-cultures in vitro and in vivo. Scientific Reports, 2020, 10, 9832.	1.6	34
15	Personalized Identification of Optimal HIPEC Perfusion Protocol in Patient-Derived Tumor Organoid Platform. Annals of Surgical Oncology, 2020, 27, 4950-4960.	0.7	36
16	Drug compound screening in single and integrated multi-organoid body-on-a-chip systems. Biofabrication, 2020, 12, 025017.	3.7	141
17	206â€An immune-competent tumor organoid platform to test novel immune checkpoint combinations targeting the receptor CD47 in triple negative breast cancer. , 2020, 8, A222-A222.		2
18	The Use of Pulsed Electromagnetic Field to Modulate Inflammation and Improve Tissue Regeneration: A Review. Bioelectricity, 2019, 1, 247-259.	0.6	24

SHAY SOKER

#	Article	IF	CITATIONS
19	Optimization of collagen type I-hyaluronan hybrid bioink for 3D bioprinted liver microenvironments. Biofabrication, 2019, 11, 015003.	3.7	171
20	Biofabricated tumor microenvironments for studying colorectal cancer in vitro and in vivo Journal of Clinical Oncology, 2019, 37, e14689-e14689.	0.8	0
21	Shear stress upregulates regeneration-related immediate early genes in liver progenitors in 3D ECM-like microenvironments. Journal of Cellular Physiology, 2018, 233, 4272-4281.	2.0	19
22	Selfâ€assembled liver organoids recapitulate hepatobiliary organogenesis in vitro. Hepatology, 2018, 67, 750-761.	3.6	95
23	Environmental Toxin Screening Using Human-Derived 3D Bioengineered Liver and Cardiac Organoids. Frontiers in Public Health, 2018, 6, 103.	1.3	77
24	Mesenchymal stem cells support growth and organization of host-liver colorectal-tumor organoids and possibly resistance to chemotherapy. Biofabrication, 2017, 9, 021002.	3.7	63
25	Bioengineered Submucosal Organoids for <i>In Vitro</i> Modeling of Colorectal Cancer. Tissue Engineering - Part A, 2017, 23, 1026-1041.	1.6	38
26	A tunable hydrogel system for longâ€ŧerm release of cellâ€secreted cytokines and bioprinted <i>in situ</i> wound cell delivery. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 1986-2000.	1.6	92
27	Optical Tracking and Digital Quantification of Beating Behavior in Bioengineered Human Cardiac Organoids. Biosensors, 2017, 7, 24.	2.3	31
28	<i>In Vitro</i> Proliferation of Porcine Pancreatic Islet Cells for <i>β</i> Cell Therapy Applications. Journal of Diabetes Research, 2016, 2016, 1-8.	1.0	2
29	Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro. Journal of Korean Medical Science, 2016, 31, 171.	1.1	60
30	A reductionist metastasisâ€onâ€aâ€chip platform for in vitro tumor progression modeling and drug screening. Biotechnology and Bioengineering, 2016, 113, 2020-2032.	1.7	183
31	Fluid Flow Regulation of Revascularization and Cellular Organization in a Bioengineered Liver Platform. Tissue Engineering - Part C: Methods, 2016, 22, 199-207.	1.1	26
32	Liver-Tumor Hybrid Organoids for Modeling Tumor Growth and Drug Response In Vitro. Annals of Biomedical Engineering, 2015, 43, 2361-2373.	1.3	118
33	<i>In situ</i> patterned micro 3D liver constructs for parallel toxicology testing in a fluidic device. Biofabrication, 2015, 7, 031001.	3.7	75
34	Genetic Modification of Primate Amniotic Fluid-Derived Stem Cells Produces Pancreatic Progenitor Cells in vitro. Cells Tissues Organs, 2013, 197, 269-282.	1.3	14
35	Porcine pancreas extracellular matrix as a platform for endocrine pancreas bioengineering. Biomaterials, 2013, 34, 5488-5495.	5.7	145
36	Substrate elasticity controls cell proliferation, surface marker expression and motile phenotype in amniotic fluid-derived stem cells. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 17, 307-316.	1.5	111

SHAY SOKER

#	Article	IF	CITATIONS
37	Expression of Primary Cilia on Liver Stem and Progenitor Cells: Potential Role for Mechanosensing in Liver Development. , 2013, , .		0
38	Evaluation of parenchymal fluid pressure in native and decellularized liver tissue. Biomedical Sciences Instrumentation, 2012, 48, 303-9.	0.2	14
39	Non-destructive real-time imaging of cell morphology for tissue-engineering applications. , 2011, , .		0
40	Non-Destructive Real-Time Imaging of Cell Seeded Tissue Engineered Scaffolds. , 2011, , .		0
41	Smooth Muscle Cell Seeding on Decellularized Porcine Saphenous Vein Scaffolds –A Step Towards Functional Tissue Engineered Blood Vessels. FASEB Journal, 2009, 23, 817.2.	0.2	0
42	Total Organ Replacement Using Tissue Engineering. FASEB Journal, 2007, 21, A140.	0.2	1