Mohamed E El-Khouly

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6443402/mohamed-e-el-khouly-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

139 5,431 42 69 g-index

153 5,849 4.5 avg, IF L-index

#	Paper	IF	Citations
139	Donor-acceptor-type poly[chalcogenoviologentriphenylamine] for synaptic biomimicking and neuromorphic computing <i>IScience</i> , 2022 , 25, 103640	6.1	O
138	Cyanospirobifluorene-based conjugated polyelectrolytes: Synthesis and tunable nonvolatile information storage performance. <i>European Polymer Journal</i> , 2022 , 163, 110940	5.2	O
137	BSA Interaction, Molecular Docking, and Antibacterial Activity of Zinc(II) Complexes Containing the Sterically Demanding Biomimetic N3S2 Ligand: The Effect of Structure Flexibility. <i>Molecules</i> , 2022 , 27, 3543	4.8	1
136	Efficient adsorptive removal of tetracycline from aqueous solution using phytosynthesized nano-zero valent iron. <i>Journal of Saudi Chemical Society</i> , 2021 , 25, 101365	4.3	9
135	90% yield production of polymer nano-memristor for in-memory computing. <i>Nature Communications</i> , 2021 , 12, 1984	17.4	22
134	Synthesis, photophysical, and theoretical studies on Econjugated copolymers based on benzothiadiazole and cyanopyridine acceptor moieties along with other Ebridge units. <i>Journal of Physical Organic Chemistry</i> , 2021 , 34, e4158	2.1	2
133	Conjugated polymer covalently modified multi-walled carbon nanotubes for flexible nonvolatile RRAM devices. <i>European Polymer Journal</i> , 2021 , 142, 110153	5.2	4
132	Optoelectrical Switching of Nonfullerene Acceptor Y6 and BPQD-Based Bulk Heterojunction Memory Device through Photoelectric Effect. <i>Advanced Electronic Materials</i> , 2021 , 7, 2001191	6.4	4
131	Green Synthesis of Nano-Zero-Valent Iron Using Seeds Extract: Characterization and Application in the Treatment of Methylene Blue-Polluted Water. <i>ACS Omega</i> , 2021 , 6, 25397-25411	3.9	16
130	Facile and environmentally friendly fabrication of few-layer bismuthene by electrochemical exfoliation method for ultrafast photonic applications. <i>Journal of Alloys and Compounds</i> , 2021 , 882, 160	756	4
129	Water soluble porphyrin as optical sensor for the toxic heavy metal ions in an aqueous medium. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 241, 118609	4.4	9
128	Magnetite nano-spherical quantum dots decorated graphene oxide nano sheet (GO@Fe3O4): Electrochemical properties and applications for removal heavy metals, pesticide and solar cell. <i>Applied Surface Science</i> , 2020 , 506, 144896	6.7	48
127	Energy-transfer versus electron-transfer reactions for the light-harvesting phthalocyanine/dithiolato-bisimino zinc system. <i>Journal of Coordination Chemistry</i> , 2020 , 73, 622-633	1.6	1
126	Graphene oxide decorated with zinc oxide nanoflower, silver and titanium dioxide nanoparticles: fabrication, characterization, DNA interaction, and antibacterial activity <i>RSC Advances</i> , 2019 , 9, 3704-37	73:4	49
125	Supramolecular off-on-off fluorescent biosensor for total Free thyroid hormones detection based on their differential binding with cucurbit[7]uril to fluorescent perylene derivative. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2019 , 382, 111945	4.7	4
124	Simple, selective detection and efficient removal of toxic lead and silver metal ions using Acid Red 94 <i>RSC Advances</i> , 2019 , 9, 8355-8363	3.7	3
123	Self-assembly of porphyrin on graphene oxide in aqueous medium: fabrication, characterization, and photocatalytic studies. <i>Photochemical and Photobiological Sciences</i> , 2019 , 18, 2071-2079	4.2	25

Symmetrical phthalocyanine bearing four triptycene moieties: Synthesis, photophysical and singlet oxygen generation. <i>Journal of Porphyrins and Phthalocyanines</i> , 2019 , 23, 990-1000	1.8	1
Fabrication of Mesoporous NaZrP Cation-Exchanger for U(VI) Ions Separation from Uranyl Leach Liquors. <i>Colloids and Interfaces</i> , 2019 , 3, 61	3	5
Epidermal Growth Factor Receptor-Targeted Multifunctional Photosensitizers for Bladder Cancer Imaging and Photodynamic Therapy. <i>Journal of Medicinal Chemistry</i> , 2019 , 62, 2598-2617	8.3	17
Fabrication and characterization of graphene oxidelitanium dioxide nanocomposite for degradation of some toxic insecticides. <i>Journal of Industrial and Engineering Chemistry</i> , 2019 , 69, 315-3	23 ^{6.3}	48
Graphene oxide-metal oxide nanocomposites: fabrication, characterization and removal of cationic rhodamine B dye <i>RSC Advances</i> , 2018 , 8, 13323-13332	3.7	54
Cellulose acetate assisted synthesis of worm-shaped mesopores of MgP ion-exchanger for cesium ions removal from seawater. <i>Microporous and Mesoporous Materials</i> , 2018 , 265, 211-218	5.3	24
Assemblies of Boron Dipyrromethene/Porphyrin, Phthalocyanine, and C Moieties as Artificial Models of Photosynthesis: Synthesis, Supramolecular Interactions, and Photophysical Studies. <i>Chemistry - A European Journal</i> , 2018 , 24, 3862-3872	4.8	13
Synthesis of mesoporous silica-polymer composite for the chloridazon pesticide removal from aqueous media. <i>Journal of Environmental Chemical Engineering</i> , 2018 , 6, 2214-2221	6.8	26
Intramolecular electron transfer of light harvesting perylene-pyrene supramolecular conjugate. <i>Photochemical and Photobiological Sciences</i> , 2018 , 17, 1098-1107	4.2	1
Energy transfer between two light harvesting phthalocyanine derivatives as model for artificial photosynthetic antenna: Laser photolysis studies. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2018 , 205, 508-513	4.4	3
Long-Lived Photoexcited State of a Mn(IV)-Oxo Complex Binding Scandium Ions That is Capable of Hydroxylating Benzene. <i>Journal of the American Chemical Society</i> , 2018 , 140, 8405-8409	16.4	24
Optical properties and structural morphology of one-dimensional perylenediimide derivatives. Journal of Luminescence, 2018, 196, 455-461	3.8	4
Cellulose acetate/EDTA-chelator assisted synthesis of ordered mesoporous HAp microspheres for efficient removal of radioactive species from seawater. <i>Journal of Environmental Chemical Engineering</i> , 2018 , 6, 5845-5854	6.8	15
Decontamination of radioactive cesium ions using ordered mesoporous monetite <i>RSC Advances</i> , 2018 , 8, 19041-19050	3.7	30
Solar energy conversion: From natural to artificial photosynthesis. <i>Journal of Photochemistry and Photobiology C: Photochemistry Reviews</i> , 2017 , 31, 36-83	16.4	167
A light harvesting perylene derivative - zinc phthalocyanine complex in water: spectroscopic and thermodynamic studies. <i>Photochemical and Photobiological Sciences</i> , 2017 , 16, 861-869	4.2	9
A subphthalocyanine-pyrene dyad: electron transfer and singlet oxygen generation. <i>Photochemical and Photobiological Sciences</i> , 2017 , 16, 1512-1518	4.2	9
The sensitivity of donor - acceptor charge transfer to molecular geometry in DAN - NDI based supramolecular flower-like self-assemblies. <i>Scientific Reports</i> , 2017 , 7, 16501	4.9	22
	Epidermal Growth Factor Receptor-Targeted Multifunctional Photosensitizers for Bladder Cancer Imaging and Photodynamic Therapy. Journal of Medicinal Chemistry, 2019, 62, 2598-2617 Epidermal Growth Factor Receptor-Targeted Multifunctional Photosensitizers for Bladder Cancer Imaging and Photodynamic Therapy. Journal of Medicinal Chemistry, 2019, 62, 2598-2617 Fabrication and characterization of graphene oxideBitanium dioxide nanocomposite for degradation of some toxic insecticides. Journal of Industrial and Engineering Chemistry, 2019, 69, 315-3 Graphene oxide-metal oxide nanocomposites: fabrication, characterization and removal of cationic rhodamine B dye RSC Advances, 2018, 8, 13323-13332 Cellulose acetate assisted synthesis of worm-shaped mesopores of MgP ion-exchanger for cesium ions removal from seawater. Microporous and Mesoporous Materials, 2018, 265, 211-218 Assemblies of Boron Dipyrromethene/Porphyrin, Phthalocyanine, and C Moieties as Artificial Models of Photosynthesis: Synthesis, Supramolecular Interactions, and Photophysical Studies. Chemistry - A European Journal, 2018, 24, 3862-3872 Synthesis of mesoporous silica-polymer composite for the chloridazon pesticide removal from aqueous media. Journal of Environmental Chemical Engineering, 2018, 6, 2214-2221 Intramolecular electron transfer of light harvesting perylene-pyrene supramolecular conjugate. Photochemical and Photobiological Sciences, 2018, 17, 1098-1107 Energy transfer between two light harvesting phthalocyanine derivatives as model for artificial photosynthetic antenna: Laser photolysis studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 205, 508-513 Long-Lived Photoexcited State of a Mn(IV)-Oxo Complex Binding Scandium Ions That is Capable of Hydroxylating Benzenee. Journal of the American Chemical Society, 2018, 140, 8405-8409 Optical properties and structural morphology of one-dimensional perylenediimide derivatives. Journal of Luminescence, 2018, 196, 455-461 Cellulose acetate/EDTA-chelator a	Expirection of Mesoporous NaZrP Cation-Exchanger for U(VI) Ions Separation from Uranyl Leach Liquors. Colloids and Interfaces, 2019, 3, 61 Epidermal Growth Factor Receptor-Targeted Multifunctional Photosensitizers for Bladder Cancer Imaging and Photodynamic Therapy. Journal of Medicinal Chemistry, 2019, 62, 2598-2617 Fabrication and characterization of graphene oxidelitanium dioxide nanocomposite for degradation of some toxic insecticides. Journal of Industrial and Engineering Chemistry, 2019, 69, 315-32\$ Graphene oxide-metal oxide nanocomposites: fabrication, characterization and removal of cationic rhodamine B dye RSC Advances, 2018, 8, 13323-13332 Cellulose acetate assisted synthesis of worm-shaped mesopores of MgP ion-exchanger for cesium ions removal from seawater. Microporous and Mesoporous Materials, 2018, 265, 211-218 Assemblies of Boron Dipyrromethene/Porphyrin, Phthalocyanine, and C Moietles as Artificial Models of Photosynthesis. Synthesis, Supramolecular Interactions, and Photophysical Studies. Chemistry - A European Journal, 2018, 24, 3862-3872 Synthesis of mesoporous silica-polymer composite for the chloridazon pesticide removal from aqueous media. Journal of Environmental Chemical Engineering, 2018, 6, 2214-2221 Intramolecular electron transfer of light harvesting perylene-pyrene supramolecular conjugate. Photochemical and Photobiological Sciences, 2018, 17, 1098-1107 Energy transfer between two light harvesting phthalocyanine derivatives as model for artificial photosynthetic antenna: Laser photolysis studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 205, 508-513 Long-Lived Photoexcited State of a Mn(IV)-Oxo Complex Binding Scandium lons That is Capable of Hydroxylating Benzene. Journal of the American Chemical Society, 2018, 140, 8405-8409 Optical properties and structural morphology of one-dimensional perylenediimide derivatives. Journal of Luminescence, 2018, 196, 455-461 Cellulose acetate/EDTA-chelator assisted synthesis of ordered mesoporous

104	Spectroscopic and thermodynamic studies of light harvesting perylenediimide derivative - zinc porphyrin complex in aqueous media. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2017 , 186, 132-139	4.4	4
103	Light harvesting a gold porphyrin-zinc phthalocyanine supramolecular donor-acceptor dyad. <i>Photochemical and Photobiological Sciences</i> , 2016 , 15, 1340-1346	4.2	17
102	Light harvesting subphthalocyanineferrocene dyads: Fast electron transfer process studied by femtosecond laser photolysis. <i>Journal of Porphyrins and Phthalocyanines</i> , 2016 , 20, 1148-1155	1.8	6
101	Light-Harvesting Phthalocyanine-Diketopyrrolopyrrole Derivatives: Synthesis, Spectroscopic, Electrochemical, and Photochemical Studies. <i>Chemistry - A European Journal</i> , 2016 , 22, 17800-17807	4.8	7
100	Synthesis and photophysical studies of a low-symmetry tribenzoisothiazoloporphyrazine. <i>Journal of Porphyrins and Phthalocyanines</i> , 2016 , 20, 1090-1097	1.8	1
99	Energy-transfer studies on phthalocyanine B ODIPY light harvesting pentad by laser flash photolysis. <i>Journal of Porphyrins and Phthalocyanines</i> , 2015 , 19, 261-269	1.8	10
98	Synthesis, photophysical and photochemical properties of novel phthalocyanines substituted with triptycene moieties. <i>Polyhedron</i> , 2015 , 90, 85-90	2.7	9
97	Photoinduced electron transfer from silyl end-capped sexithiophene to benzoquinone derivatives studied by laser photolysis. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2015 , 302, 11-16	4.7	2
96	Photosynthetic antenna-reaction center mimicry by using boron dipyrromethene sensitizers. <i>ChemPhysChem</i> , 2014 , 15, 30-47	3.2	197
95	Photoinduced electron transfer of zinc porphyrin-oligo(thienylenevinylene)-fullerene[60] triads; thienylenevinylenes as efficient molecular wires. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 2443-51	3.6	24
94	Bisdonor BzaBODIPY Bullerene Supramolecules: Syntheses, Characterization, and Light-Induced Electron-Transfer Studies. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 2321-2332	3.8	42
93	Synthesis and fast electron-transfer reactions of fullereneBarbazole dendrimers with short linkages. <i>New Journal of Chemistry</i> , 2013 , 37, 3252	3.6	4
92	InnenrEktitelbild: Charge Dynamics in A DonorAcceptor Covalent Organic Framework with Periodically Ordered Bicontinuous Heterojunctions (Angew. Chem. 7/2013). <i>Angewandte Chemie</i> , 2013 , 125, 2181-2181	3.6	
91	Excitation-wavelength-dependent, ultrafast photoinduced electron transfer in bisferrocene/BF2-chelated-azadipyrromethene/fullerene tetrads. <i>Chemistry - A European Journal</i> , 2013 , 19, 7221-30	4.8	56
90	Self-Assembled via Metalligand Coordination AzaBODIPYlinc Phthalocyanine and AzaBODIPYlinc Naphthalocyanine Conjugates: Synthesis, Structure, and Photoinduced Electron Transfer. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 5638-5649	3.8	47
89	Charge dynamics in a donor-acceptor covalent organic framework with periodically ordered bicontinuous heterojunctions. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 2017-21	16.4	217
88	A charge-stabilizing, multimodular, ferrocene-bis(triphenylamine)-zinc-porphyrin-fullerene polyad. <i>Chemistry - A European Journal</i> , 2013 , 19, 9629-38	4.8	52
87	Solution-Processed Bulk Heterojunction Solar Cells with Silyl End-Capped Sexithiophene. International Journal of Photoenergy, 2013, 2013, 1-9	2.1	2

(2011-2013)

86	Silicon phthalocyanine-azobenzene-[60]fullerene light harvesting pentad: synthesis, characterization and electron transfer reaction studied by laser flash photolysis. <i>Journal of Porphyrins and Phthalocyanines</i> , 2013 , 17, 1055-1063	1.8	8
85	Charge Dynamics in A DonorAcceptor Covalent Organic Framework with Periodically Ordered Bicontinuous Heterojunctions. <i>Angewandte Chemie</i> , 2013 , 125, 2071-2075	3.6	46
84	Photosynthetic antenna-reaction center mimicry with a covalently linked monostyryl boron-dipyrromethene-aza-boron-dipyrromethene-C60 triad. <i>Chemistry - A European Journal</i> , 2013 , 19, 11332-41	4.8	83
83	Subphthalocyanines as Light-Harvesting Electron Donor and Electron Acceptor in Artificial Photosynthetic Systems. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 19709-19717	3.8	29
82	Light harvesting zinc naphthalocyanine-perylenediimide supramolecular dyads: long-lived charge-separated states in nonpolar media. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 3612-21	3.6	34
81	A novel BF2-chelated azadipyrromethene-fullerene dyad: synthesis, electrochemistry and photodynamics. <i>Chemical Communications</i> , 2012 , 48, 206-8	5.8	82
80	Ultrafast photoinduced energy and electron transfer in multi-modular donor-acceptor conjugates. <i>Chemistry - A European Journal</i> , 2012 , 18, 13844-53	4.8	71
79	Control over photoinduced energy and electron transfer in supramolecular polyads of covalently linked azaBODIPY-bisporphyrin 'molecular clip' hosting fullerene. <i>Journal of the American Chemical Society</i> , 2012 , 134, 654-64	16.4	142
78	Synthesis and photodynamics of fluorescent blue BODIPY-porphyrin tweezers linked by triazole rings. <i>Journal of Physical Chemistry A</i> , 2012 , 116, 3889-98	2.8	52
77	Near-IR excitation transfer and electron transfer in a BF2-chelated dipyrromethane-azadipyrromethane dyad and triad. <i>Chemistry - A European Journal</i> , 2012 , 18, 5239-47	4.8	84
76	Photoinduced electron transfer in zinc naphthalocyanine-naphthalenediimide supramolecular dyads. <i>ChemPhysChem</i> , 2012 , 13, 1191-8	3.2	11
75	Photoinduced electron transfer in a ferrocene-distyryl BODIPY dyad and a ferrocene-distyryl BODIPY-C60 triad. <i>ChemPhysChem</i> , 2012 , 13, 2030-6	3.2	29
74	Tetrathiafulvalene-fused porphyrins via quinoxaline linkers: symmetric and asymmetric donor-acceptor systems. <i>ChemPhysChem</i> , 2012 , 13, 3370-82	3.2	28
73	Ultrafast excitation transfer and charge stabilization in a newly assembled photosynthetic antenna-reaction center mimic composed of boron dipyrrin, zinc porphyrin and fullerene. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 18168-78	3.6	53
72	Syntheses, electrochemistry, and photodynamics of ferrocene-azadipyrromethane donoracceptor dyads and triads. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 9810-9	2.8	63
71	Elongation of lifetime of the charge-separated state of ferrocene-naphthalenediimide-[60]fullerene triad via stepwise electron transfer. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 14430-7	2.8	27
7°	Photoinduced electron transfer in a distyryl BODIPY-fullerene dyad. <i>Chemistry - an Asian Journal</i> , 2011 , 6, 174-9	4.5	73
69	Mimicking photosynthetic antenna-reaction-center complexes with a (boron dipyrromethene)3-porphyrin-C60 pentad. <i>Chemistry - A European Journal</i> , 2011 , 17, 1605-13	4.8	88

68	Photochemical charge separation in closely positioned donor-boron dipyrrin-fullerene triads. <i>Chemistry - A European Journal</i> , 2011 , 17, 3147-56	4.8	57	
67	Electron Delocalization in One-Dimensional Perylenediimide Nanobelts through Photoinduced Electron Transfer. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 15040-15047	3.8	28	
66	Saddle distortion of a sterically unhindered porphyrin ring in a copper porphyrin with electron-donating substituents. <i>Inorganic Chemistry</i> , 2011 , 50, 671-8	5.1	33	
65	Annulation of Tetrathiafulvalene to the Bay Region of Perylenediimide: Fast Electron-Transfer Processes in Polar and Nonpolar Solvents. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 8325-8334	3.8	23	
64	Synthesis, electrochemical, and photophysical studies of hexadecachlorinatedphthalocyaninato zinc(II). <i>Dyes and Pigments</i> , 2011 , 91, 231-236	4.6	7	
63	Photoinduced energy-transfer and electron-transfer processes in molecules of tetrakis((E)-2-(50-hexyl-2,20-bithiophen-5-yl)vinyl)benzene and perylenediimide. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2011 , 218, 17-25	4.7	8	
62	Light harvesting phthalocyanine/subphthalocyanine system: intermolecular electron-transfer and energy-transfer reactions via the triplet subphthalocyanine. <i>Journal of Porphyrins and Phthalocyanines</i> , 2011 , 15, 111-117	1.8	32	
61	Efficient Electron Transfer Processes of the Covalently Linked Perylenediimidefferrocene Systems: Femtosecond and Nanosecond Transient Absorption Studies. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 10969-10977	3.8	32	
60	Effect of anion binding on charge stabilization in a bis-fullerene-oxoporphyrinogen conjugate. <i>Chemical Communications</i> , 2010 , 46, 7933-5	5.8	13	
59	Charge stabilization in a closely spaced ferrocene-boron dipyrrin-fullerene triad. <i>Chemical Communications</i> , 2010 , 46, 3301-3	5.8	53	
58	Electron transfer reaction of light harvesting zinc naphthalocyanine-subphthalocyanine self-assembled dyad: spectroscopic, electrochemical, computational, and photochemical studies. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 12746-52	3.6	28	
57	Stabilization of the charge-separated States of covalently linked zinc porphyrin-triphenylamine-[60]fullerene. <i>ChemPhysChem</i> , 2010 , 11, 1726-34	3.2	17	
56	Supramolecular tetrad of subphthalocyanine-triphenylamine-zinc porphyrin coordinated to fullerene as an "antenna-reaction-center" mimic: formation of a long-lived charge-separated state in nonpolar solvent. <i>Chemistry - A European Journal</i> , 2010 , 16, 6193-202	4.8	98	
55	Synthesis and photoinduced intramolecular processes of light-harvesting silicon phthalocyanine-naphthalenediimide-fullerene connected systems. <i>Chemistry - A European Journal</i> , 2009 , 15, 5301-10	4.8	58	
54	A new cyanofluorene-triphenylamine copolymer: synthesis and photoinduced intramolecular electron transfer processes. <i>Chemistry - A European Journal</i> , 2009 , 15, 10818-24	4.8	8	
53	Photoinduced processes of newly synthesized bisferrocene- and bisfullerene-substituted tetrads with a triphenylamine central block. <i>Journal of Organometallic Chemistry</i> , 2009 , 694, 1818-1825	2.3	10	
52	Phthalocyanine-C60 fused conjugates exhibiting molecular orbital interactions depending on the solvent polarity. <i>Chemistry - an Asian Journal</i> , 2009 , 4, 1678-86	4.5	13	
51	Long-lived charge-separated configuration of a push-pull archetype of Disperse Red 1 end-capped poly[9,9-bis(4-diphenylaminophenyl)fluorene]. <i>Journal of the American Chemical Society</i> , 2009 , 131, 63	70 ¹⁶ .4	48	

(2006-2009)

50	Long-Lived Charge Separation in a Dyad of Closely-Linked Subphthalocyanine-Zinc Porphyrin Bearing Multiple Triphenylamines. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 15444-15453	3.8	51	
49	Effect of dual fullerenes on lifetimes of charge-separated States of subphthalocyanine-triphenylamine-fullerene molecular systems. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 3910-7	3.4	52	
48	Photoinduced Intramolecular Electron Transfer of Carbazole Trimer-[60]Fullerene Studied by Laser Flash Photolysis Techniques. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 1244-1249	3.8	9	
47	Photoinduced Processes of SubphthalocyanineDiazobenzeneEullerene Triad as an Efficient Excited Energy Transfer System. <i>Chemistry Letters</i> , 2008 , 37, 544-545	1.7	30	
46	A new blue-light emitting polymer: Synthesis and photoinduced electron transfer process. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 4249-4253	2.5	7	
45	Comparative study of the bimolecular electron transfer of fullerenes (C60/C70) and 9,9-disubstituted fluorenes by laser flash photolysis. <i>Photochemical and Photobiological Sciences</i> , 2007 , 6, 539-44	4.2	2	
44	Prolonged charge-separated states of starburst tetra(diphenylaminofluoreno)[60]fullerene adducts upon photoexcitation. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 6938-44	2.8	18	
43	Synthesis and photoinduced electron-transfer process of a novel triphenylamine-substituted polyfluorene-C60 triad. <i>Chemistry - A European Journal</i> , 2007 , 13, 1709-14	4.8	21	
42	Silicon-phthalocyanine-cored fullerene dendrimers: synthesis and prolonged charge-separated states with dendrimer generations. <i>Chemistry - A European Journal</i> , 2007 , 13, 2854-63	4.8	60	
41	Comparison between the Photophysical Properties of Pyrazolo- and Isoxazolo[60]fullerenes with Dual Donors (Ferrocene, Aniline and Alkoxyphenyl). <i>European Journal of Organic Chemistry</i> , 2007 , 2007, 2175-2185	3.2	18	
40	Photoinduced intermolecular electron transfer process of fullerene (C60) and amine-substituted fluorenes studied by laser flash photolysis. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2007 , 67, 636-42	4.4	12	
39	Photoinduced Electron Transfer Between Chlorophylls (a/b) and Fullerenes (C60/C70) Studied by Laser Flash Photolysis¶. <i>Photochemistry and Photobiology</i> , 2007 , 74, 22-30	3.6	2	
38	Synthesis and photophysical studies of porphyrin-ferrocene conjugates. <i>Journal of Porphyrins and Phthalocyanines</i> , 2007 , 11, 719-728	1.8	12	
37	Photoinduced Charge Separation of the Covalently Linked Fullerene I riphenylamine Fullerene Triad. Effect of Dual Fullerenes on Lifetimes of Charge-Separated States. <i>Bulletin of the Chemical Society of Japan</i> , 2007 , 80, 2465-2472	5.1	15	
36	Photophysical properties of the newly synthesized triad based on [70]fullerene studies with laser flash photolysis. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 4335-41	3.4	11	
35	Synthesis and Photophysical Properties of a Pyrazolino[60]fullerene with Dimethylaniline Connected by an Acetylene Linkage. <i>European Journal of Organic Chemistry</i> , 2006 , 2006, 2344-2351	3.2	18	
34	Intramolecular photoinduced processes of newly synthesized dual zinc porphyrin-fullerene triad with flexible linkers. <i>Journal of Porphyrins and Phthalocyanines</i> , 2006 , 10, 1380-1391	1.8	7	
33	Photoinduced processes in a tricomponent molecule consisting of diphenylaminofluorene-dicyanoethylene-methano[60]fullerene. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 884-91	2.8	38	

32	Synthesis and photophysical properties of ruthenocene-[60]fullerene dyads. <i>New Journal of Chemistry</i> , 2006 , 30, 93-101	3.6	11
31	Synthesis and photophysical properties of a [60]fullerene compound with dimethylaniline and ferrocene connected through a pyrazolino group: a study by laser flash photolysis. <i>Physical Chemistry Chemical Physics</i> , 2006 , 8, 4104-11	3.6	13
30	Photophysical studies of supramolecular triads involving zinc naphthalocyanines and pyridylfullerenes with a second electron donor. <i>Journal of Porphyrins and Phthalocyanines</i> , 2006 , 10, 115	5 6 -916	4 ²⁴
29	Unusual Photophysical Properties of Emerald Green [60]Fullerene. <i>Chemistry Letters</i> , 2006 , 35, 710-711	1.7	2
28	Supramolecular triads bearing porphyrin and fullerene via Ewo-point Dinding involving coordination and hydrogen bonding. <i>Tetrahedron</i> , 2006 , 62, 1967-1978	2.4	36
27	Efficiency of singlet oxygen production from self-assembled nanospheres of molecular micelle-like photosensitizers FC4S. <i>Journal of Materials Chemistry</i> , 2005 , 15, 1857		34
26	Dyads and triads containing perylenetetracarboxylic diimide and porphyrin: efficient photoinduced electron transfer elicited via both excited singlet states. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 3658	3 ³ 647	55
25	Spectral, electrochemical, and photophysical studies of a magnesium porphyrin-fullerene dyad. <i>Physical Chemistry Chemical Physics</i> , 2005 , 7, 3163-71	3.6	47
24	Self-assembled via axial coordination magnesium porphyrin-imidazole appended fullerene dyad: spectroscopic, electrochemical, computational, and photochemical studies. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 10107-14	3.4	69
23	Self-assembled photoresponsive amphiphilic diphenylaminofluorene-C60 conjugate vesicles in aqueous solution. <i>Langmuir</i> , 2005 , 21, 3267-72	4	35
22	A supramolecular Star Wars Tie Fighter Ship: electron transfer in a self-assembled triad composed of two zinc naphthalocyanines and a fullerene. <i>Journal of Porphyrins and Phthalocyanines</i> , 2005 , 09, 698-	-70 5	17
21	Intermolecular and supramolecular photoinduced electron transfer processes of fullereneporphyrin/phthalocyanine systems. <i>Journal of Photochemistry and Photobiology C:</i> Photochemistry Reviews, 2004 , 5, 79-104	16.4	473
20	Self-assembled supramolecular triad composed of fulleropyrrolidine bearing two pyridine moieties axially coordinated to two zinc porphyrins. <i>Journal of Porphyrins and Phthalocyanines</i> , 2003 , 07, 1-7	1.8	34
19	Studies on intra-supramolecular and intermolecular electron-transfer processes between zinc naphthalocyanine and imidazole-appended fullerene. <i>ChemPhysChem</i> , 2003 , 4, 474-81	3.2	114
18	Photoinduced Electron Transfer in IIwo-PointIBound Supramolecular Triads Composed of N,N-Dimethylaminophenyl-Fullerene-Pyridine Coordinated to Zinc Porphyrin. <i>Journal of Physical Chemistry A</i> , 2003 , 107, 4801-4807	2.8	76
17	Photoinduced Electron Transfer from Aromatic Aldehyde Hydrazones to Triplet States of C60and C70; Electron-Mediating and Hole-Shifting Systems. <i>Bulletin of the Chemical Society of Japan</i> , 2002 , 75, 1247-1254	5.1	12
16	Electronic Interactions and Photoinduced Electron Transfer in Covalently Linked Porphyrin (160 (pyridine) Diads and Supramolecular Triads Formed by Self-Assembling the Diads and Zinc Porphyrin. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 4952-4962	3.4	92
15	Spectroscopic, Electrochemical, and Photochemical Studies of Self-Assembled via Axial Coordination Zinc Porphyrin E ulleropyrrolidine Dyads <i>Journal of Physical Chemistry A</i> , 2002 , 106, 3243-3	258 252	225

LIST OF PUBLICATIONS

14	Studies on Covalently Linked Porphyrint 60 Dyads: Stabilization of Charge-Separated States by Axial Coordination. <i>Journal of Physical Chemistry A</i> , 2002 , 106, 12393-12404	2.8	111
13	Photoinduced electron transfer between metal octaethylporphyrins and fullerenes (C60/C70) studied by laser flash photolysis: electron-mediating and hole-shifting cycles. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 3322-3329	3.6	31
12	Photoinduced electron transfer between chlorophylls (a/b) and fullerenes (C60/C70) studied by laser flash photolysis. <i>Photochemistry and Photobiology</i> , 2001 , 74, 22-30	3.6	14
11	Photoinduced electron transfer between fullerenes (C60/C70) and disubstituted naphthalenes using laser flash photolysis. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2001 , 141, 1-7	4.7	9
10	Solvent Dependence of Charge Separation and Charge Recombination Rates in Porphyrin Eullerene Dyad. <i>Journal of Physical Chemistry A</i> , 2001 , 105, 325-332	2.8	194
9	Probing the donor-acceptor proximity on the physicochemical properties of porphyrin-fullerene dyads: "tail-on" and "tail-off" binding approach. <i>Journal of the American Chemical Society</i> , 2001 , 123, 527	7 ⁷ -84	179
8	Catalytic effects of dioxygen on intramolecular electron transfer in radical ion pairs of zinc porphyrin-linked fullerenes. <i>Journal of the American Chemical Society</i> , 2001 , 123, 2571-5	16.4	130
7	Efficient photoinduced electron transfer between C60/C70 and zinc octaethylporphyrin studied by nanosecond laser photolysis method. <i>Journal of Porphyrins and Phthalocyanines</i> , 2000 , 04, 591-598	1.8	17
6	Photoinduced electron transfer from triplet states of phthalocyanines to fullerenes studied by transient absorption spectroscopies in visible and near-IR regions. <i>Journal of Porphyrins and Phthalocyanines</i> , 2000 , 04, 713-721	1.8	30
5	Effects of Trimethylpyridine Addition on forward and backward Electron Transfer between Triplet States of C60/C70 and 2-Naphthols. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 1196-1200	2.8	8
4	Fluorescence quenching and complexation behaviour of tetraphenylporphyrin with some divalent metal ions. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1996 , 92, 747		9
3	Proton-responsive azulene-based conjugated polymer with nonvolatile memory effects. <i>New Journal of Chemistry</i> ,	3.6	2
2	MoS2 nanosheets chemically modified with metal phthalocyanine via mussel-inspired chemistry for multifunctional memristive devices. <i>Journal of Materials Chemistry C</i> ,	7.1	5
1	Improving the Long-Term Stability of BPQD-Based Memory Device via Modification with Polyvinylpyrrolidone-Grafted Polydopamine. <i>Advanced Electronic Materials</i> ,2101057	6.4	1