Jason P Killgore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6443294/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrostatically-blind quantitative piezoresponse force microscopy free of distributed-force artifacts. Nanoscale Advances, 2022, 4, 2036-2045.	4.6	7
2	Photopatterning of two stage reactive polymer networks with CO ₂ -philic thiol–acrylate chemistry: enhanced mechanical toughness and CO ₂ /N ₂ selectivity. Polymer Chemistry, 2022, 13, 2495-2505.	3.9	2
3	Viscoelastic-mapping of cellulose nanofibrils using low-total-force contact resonance force microscopy (LTF-CRFM). Cellulose, 2022, 29, 5493-5509.	4.9	4
4	Digital light processing in a hybrid atomic force microscope: In Situ, nanoscale characterization of the printing process. Additive Manufacturing, 2021, 38, 101744.	3.0	5
5	Voxel-Scale Conversion Mapping Informs Intrinsic Resolution in Stereolithographic Additive Manufacturing. ACS Applied Polymer Materials, 2021, 3, 290-298.	4.4	6
6	Spatially Controlled Permeability and Stiffness in Photopatterned Two-Stage Reactive Polymer Films for Enhanced CO ₂ Barrier and Mechanical Toughness. Macromolecules, 2021, 54, 44-52.	4.8	4
7	Microscale Photopatterning of Throughâ€Thickness Modulus in a Monolithic and Functionally Graded 3Dâ€Printed Part. Small Science, 2021, 1, 2000017.	9.9	14
8	Deciphering osteoconductive surface charge effects in sintered hydroxyapatite via piezoresponse force microscopy. Journal of Applied Physics, 2021, 129, .	2.5	5
9	Nanomechanical Insights into Voxel-scale Photopolymer Cure. Microscopy and Microanalysis, 2020, 26, 1964-1966.	0.4	0
10	Error estimation and enhanced stiffness sensitivity in contact resonance force microscopy with a multiple arbitrary frequency lock-in amplifier (MAFLIA). Measurement Science and Technology, 2020, 31, 115009.	2.6	4
11	Isomorphic contact resonance force microscopy and piezoresponse force microscopy of an AlN thin film: demonstration of a new contact resonance technique. Nano Futures, 2020, 4, 025003.	2.2	3
12	Tunable Mechanical Anisotropy, Crack Guiding, and Toughness Enhancement in Two‣tage Reactive Polymer Networks. Advanced Engineering Materials, 2019, 21, 1900578.	3.5	16
13	Nanomechanics of cellulose deformation reveal molecular defects that facilitate natural deconstruction. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9825-9830.	7.1	40
14	Experimental reconstruction of the contact resonance shape factor for quantification and amplification of bias-induced strain in atomic force microscopy. Applied Physics Letters, 2019, 114, 133108.	3.3	11
15	Monitoring Fast, Voxelâ€Scale Cure Kinetics via Sampleâ€Coupledâ€Resonance Photorheology. Small Methods, 2019, 3, 1800275.	8.6	15
16	Nanoscale hygromechanical behavior of lignin. Cellulose, 2018, 25, 6345-6360.	4.9	18
17	Scanning speed phenomenon in contact-resonance atomic force microscopy. Beilstein Journal of Nanotechnology, 2018, 9, 945-952.	2.8	5
18	Contact Resonance Force Microscopy for Viscoelastic Property Measurements: From Fundamentals to State-of-the-Art Applications. Macromolecules, 2018, 51, 6977-6996.	4.8	37

JASON P KILLGORE

#	Article	IF	CITATIONS
19	Higher-eigenmode piezoresponse force microscopy: a path towards increased sensitivity and the elimination of electrostatic artifacts. Nano Futures, 2018, 2, 015005.	2.2	16
20	Reconstructing the distributed force on an atomic force microscope cantilever. Nanotechnology, 2017, 28, 104002.	2.6	4
21	Determination of the True Lateral Grain Size in Organic–Inorganic Halide Perovskite Thin Films. ACS Applied Materials & Interfaces, 2017, 9, 33565-33570.	8.0	17
22	Photothermally excited force modulation microscopy for broadband nanomechanical property measurements. Applied Physics Letters, 2015, 107, .	3.3	12
23	Vibrational shape tracking of atomic force microscopy cantilevers for improved sensitivity and accuracy of nanomechanical measurements. Nanotechnology, 2015, 26, 045701.	2.6	20
24	Quantitative Contact Resonance Force Microscopy for Viscoelastic Measurement of Soft Materials at the Solid–Liquid Interface. Langmuir, 2015, 31, 11143-11149.	3.5	25
25	Liquid contact resonance atomic force microscopy via experimental reconstruction of the hydrodynamic function. Journal of Applied Physics, 2014, 115, .	2.5	23
26	Characterizing the free and surface-coupled vibrations of heated-tip atomic force microscope cantilevers. Nanotechnology, 2014, 25, 345701.	2.6	11
27	Hydrodynamic corrections to contact resonance atomic force microscopy measurements of viscoelastic loss tangent. Review of Scientific Instruments, 2013, 84, 073703.	1.3	16
28	Measurement of Viscoelastic Loss Tangent with Contact Resonance Modes of Atomic Force Microscopy. Macromolecules, 2013, 46, 9396-9402.	4.8	45
29	Pulsed contact resonance for atomic force microscopy nanomechanical measurements. Applied Physics Letters, 2012, 100, 053104.	3.3	10
30	Low-force AFM nanomechanics with higher-eigenmode contact resonance spectroscopy. Nanotechnology, 2012, 23, 055702.	2.6	43
31	Quantitative Viscoelastic Mapping of Polyolefin Blends with Contact Resonance Atomic Force Microscopy. Macromolecules, 2012, 45, 4363-4370.	4.8	90
32	Continuous Measurement of Atomic Force Microscope Tip Wear by Contact Resonance Force Microscopy. Small, 2011, 7, 1018-1022.	10.0	47
33	Quantitative subsurface contact resonance force microscopy of model polymer nanocomposites. Nanotechnology, 2011, 22, 175706.	2.6	88