
Hong Seok Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6443253/publications.pdf Version: 2024-02-01

HONG SEOK KANG

#	Article	IF	CITATIONS
1	Reversible Halide Exchange Reaction of Organometal Trihalide Perovskite Colloidal Nanocrystals for Full-Range Band Gap Tuning. Nano Letters, 2015, 15, 5191-5199.	4.5	432
2	Red-to-Ultraviolet Emission Tuning of Two-Dimensional Gallium Sulfide/Selenide. ACS Nano, 2015, 9, 9585-9593.	7.3	163
3	Nitrogen-Doped Graphitic Layers Deposited on Silicon Nanowires for Efficient Lithium-Ion Battery Anodes. Journal of Physical Chemistry C, 2011, 115, 9451-9457.	1.5	131
4	Se-Rich MoSe ₂ Nanosheets and Their Superior Electrocatalytic Performance for Hydrogen Evolution Reaction. ACS Nano, 2020, 14, 6295-6304.	7.3	125
5	Ruthenium Nanoparticles on Cobaltâ€Doped 1T′ Phase MoS ₂ Nanosheets for Overall Water Splitting. Small, 2020, 16, e2000081.	5.2	82
6	First Principles Study of NO and NNO Chemisorption on Silicon Carbide Nanotubes and Other Nanotubes. Journal of Chemical Theory and Computation, 2008, 4, 1690-1697.	2.3	70
7	Electronic structure and photocatalytic band offset of few-layer GeP ₂ . Journal of Materials Chemistry A, 2017, 5, 22146-22155.	5.2	68
8	Electronic Structure and Carrier Mobility of Two-Dimensional α Arsenic Phosphide. Journal of Physical Chemistry C, 2015, 119, 20210-20216.	1.5	65
9	Phase Evolution of Re _{1–<i>x</i>} Mo <i>_x</i> Se ₂ Alloy Nanosheets and Their Enhanced Catalytic Activity toward Hydrogen Evolution Reaction. ACS Nano, 2020, 14, 11995-12005.	7.3	59
10	Electronic Structure of Si-Doped BN Nanotubes Using X-ray Photoelectron Spectroscopy and First-Principles Calculation. Chemistry of Materials, 2009, 21, 136-143.	3.2	56
11	Two-dimensional GeAs with a visible range band gap. Journal of Materials Chemistry A, 2018, 6, 9089-9098.	5.2	55
12	Intercalation of aromatic amine for the 2H–1T′ phase transition of MoS ₂ by experiments and calculations. Nanoscale, 2018, 10, 11349-11356.	2.8	54
13	Selective Nitrogen-Doping Structure of Nanosize Graphitic Layers. Journal of Physical Chemistry C, 2011, 115, 3737-3744.	1.5	52
14	Novel Amphiphilic Ruthenium Sensitizer with Hydrophobic Thiophene or Thieno(3,2- <i>b</i>)thiophene-Substituted 2,2′-Dipyridylamine Ligands for Effective Nanocrystalline Dye Sensitized Solar Cells. Chemistry of Materials, 2009, 21, 5719-5726.	3.2	51
15	Concurrent Vacancy and Adatom Defects of Mo _{1–<i>x</i>} Nb _{<i>x</i>} Se ₂ Alloy Nanosheets Enhance Electrochemical Performance of Hydrogen Evolution Reaction. ACS Nano, 2021, 15, 5467-5477.	7.3	51
16	Dual-channel anchorable organic dyes with well-defined structures for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 9947.	5.2	48
17	Thickness-dependent bandgap and electrical properties of GeP nanosheets. Journal of Materials Chemistry A, 2019, 7, 16526-16532.	5.2	45
18	Charge-Selective Surface-Enhanced Raman Scattering Using Silver and Gold Nanoparticles Deposited on Silicon–Carbon Core–Shell Nanowires. ACS Nano, 2012, 6, 2459-2470.	7.3	42

Hong Seok Kang

#	Article	IF	CITATIONS
19	Electronic Structures and Li-Diffusion Properties of Group IV–V Layered Materials: Hexagonal Germanium Phosphide and Germanium Arsenide. Journal of Physical Chemistry C, 2016, 120, 23842-23850.	1.5	41
20	Intercalated complexes of 1Tâ€2-MoS ₂ nanosheets with alkylated phenylenediamines as excellent catalysts for electrochemical hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 2334-2343.	5.2	41
21	Molecular engineering of hybrid sensitizers incorporating an organic antenna into ruthenium complex and their application in solar cells. New Journal of Chemistry, 2008, 32, 2233.	1.4	39
22	Nitrogen-rich 1T′-MoS ₂ layered nanostructures using alkyl amines for high catalytic performance toward hydrogen evolution. Nanoscale, 2018, 10, 14726-14735.	2.8	39
23	Selective electrochemical reduction of carbon dioxide to formic acid using indium–zinc bimetallic nanocrystals. Journal of Materials Chemistry A, 2019, 7, 22879-22883.	5.2	39
24	Stable methylammonium-intercalated 1T′-MoS ₂ for efficient electrocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 5613-5617.	5.2	38
25	Partially planar BP ₃ with high electron mobility as a phosphorene analog. Journal of Materials Chemistry C, 2017, 5, 11267-11274.	2.7	37
26	Arsenic for high-capacity lithium- and sodium-ion batteries. Nanoscale, 2018, 10, 7047-7057.	2.8	37
27	Density Functional Theory Study of O ₂ and NO Adsorption on Heteroatom-Doped Graphenes Including the van der Waals Interaction. Journal of Physical Chemistry C, 2011, 115, 10971-10978.	1.5	34
28	Electronic structure of the germanium phosphide monolayer and Li-diffusion in its bilayer. Physical Chemistry Chemical Physics, 2016, 18, 32458-32465.	1.3	32
29	Two-dimensional MoS ₂ /Fe-phthalocyanine hybrid nanostructures as excellent electrocatalysts for hydrogen evolution and oxygen reduction reactions. Nanoscale, 2019, 11, 14266-14275.	2.8	32
30	Phase-Transition Mo _{1–<i>x</i>} V _{<i>x</i>} Se ₂ Alloy Nanosheets with Rich V–Se Vacancies and Their Enhanced Catalytic Performance of Hydrogen Evolution Reaction. ACS Nano, 2021, 15, 14672-14682.	7.3	31
31	Mechanical and Electronic Properties of ï€-Conjugated Metal Bis(dithiolene) Complex Sheets. Chemistry of Materials, 2014, 26, 2967-2974.	3.2	30
32	Photoluminescence and Photocurrents of GaS _{1–<i>x</i>} Se _{<i>x</i>} Nanobelts. Chemistry of Materials, 2016, 28, 5811-5820.	3.2	28
33	Two-Dimensional WS ₂ @Nitrogen-Doped Graphite for High-Performance Lithium Ion Batteries: Experiments and Molecular Dynamics Simulations. ACS Applied Materials & Interfaces, 2018, 10, 37928-37936.	4.0	28
34	Intercalation of cobaltocene into WS ₂ nanosheets for enhanced catalytic hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 8101-8106.	5.2	26
35	Role of molecular orientation in vibration, hopping, and electronic properties of single pyridine molecules adsorbed on Ag(110) surface: A combined STM and DFT study. Surface Science, 2010, 604, 258-264.	0.8	22
36	Two dimensional MoS2 meets porphyrins via intercalation to enhance the electrocatalytic activity toward hydrogen evolution. Nanoscale, 2019, 11, 3780-3785.	2.8	21

Hong Seok Kang

#	Article	IF	CITATIONS
37	Anisotropic alloying of Re _{1â^'x} Mo _x S ₂ nanosheets to boost the electrochemical hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 25131-25141.	5.2	21
38	Polytypic Phase Transition of Nb _{1–<i>x</i>} V _{<i>x</i>} Se ₂ via Colloidal Synthesis and Their Catalytic Activity toward Hydrogen Evolution Reaction. ACS Nano, 2022, 16, 4278-4288.	7.3	18
39	Binding characteristics of pyridine on Ag(110). Journal of Chemical Physics, 2008, 128, 134707.	1.2	16
40	Two-dimensional MoS ₂ –melamine hybrid nanostructures for enhanced catalytic hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 22571-22578.	5.2	14
41	A theoretical study of fullerene–ferrocene hybrids. Journal of Computational Chemistry, 2007, 28, 594-600.	1.5	13
42	The effect of doping on the energetics and quantum conductance in graphene nanoribbons with a metallocene adsorbate. Journal of Chemical Physics, 2011, 135, 124708.	1.2	13
43	Phase polymorphism and electronic structures of TeSe ₂ . Journal of Materials Chemistry C, 2018, 6, 10218-10225.	2.7	12
44	First-Principles Study of the Oxygenation of Carbon Nanotubes and Boron Nitride Nanotubes. Chemistry of Materials, 2007, 19, 3767-3772.	3.2	11
45	Stability and electronic structures of triazine-based carbon nitride nanotubes. RSC Advances, 2015, 5, 10892-10898.	1.7	11
46	Non-Janus WSSe/MoSSe Heterobilayer and Its Photocatalytic Band Offset. Journal of Physical Chemistry C, 2020, 124, 3812-3819.	1.5	11
47	Highly Thermally Stable and Transparent WO ₃ –SiO ₂ Gasochromic Films Obtained by an Automated Printing Method. ACS Sustainable Chemistry and Engineering, 2021, 9, 17319-17329.	3.2	9
48	Phase Segregation in the Mixed Alkyl Thiol Selfâ€assembled Monolayers on a Gold Surface at a High Incubation Temperature in a Sealed Container. Bulletin of the Korean Chemical Society, 2015, 36, 2710-2715.	1.0	6
49	Multiferroicity of Non-Janus MXY (X = Se/S, Y = Te/Se) Monolayers with Giant In-Plane Ferroelectricity. Journal of Physical Chemistry C, 2021, 125, 7458-7465.	1.5	4
50	Electronegativity, phase transition, and ferroelectricity of TeSe2 few-layers. Journal of Physics Condensed Matter, 2020, 32, 045301.	0.7	2
51	Polymorphic Ga ₂ S ₃ nanowires: phase-controlled growth and crystal structure calculations. Nanoscale Advances, 2022, 4, 3218-3225.	2.2	1
52	Orientation-specific switching of inelastic electron tunneling in an oxygen–pyridine complex adsorbed onto an Ag(110) surface. Journal of Chemical Physics, 2019, 151, 114703.	1.2	0