
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6443073/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Resistive-type hydrogen gas sensor based on TiO2: A review. International Journal of Hydrogen Energy, 2018, 43, 21114-21132.	3.8	213
2	Two-Dimensional Materials in Large-Areas: Synthesis, Properties and Applications. Nano-Micro Letters, 2020, 12, 66.	14.4	172
3	The influence of Nd substitution in Ni–Zn ferrites for the improved microwave absorption properties. Ceramics International, 2020, 46, 227-235.	2.3	110
4	Nanotubular Cr-doped TiO 2 for use as high-temperature NO 2 gas sensor. Sensors and Actuators B: Chemical, 2015, 217, 78-87.	4.0	87
5	Novel Cu2ZnSnS4/Pt/g-C3N4 heterojunction photocatalyst with straddling band configuration for enhanced solar to fuel conversion. Applied Catalysis B: Environmental, 2020, 277, 119239.	10.8	79
6	Hydrothermal synthesis of Fe3O4/TiO2/g-C3N4: Advanced photocatalytic application. Applied Surface Science, 2019, 488, 887-895.	3.1	67
7	Fast highly-sensitive room-temperature semiconductor gas sensor based on the nanoscale Pt–TiO2–Pt sandwich. Sensors and Actuators B: Chemical, 2015, 207, 351-361.	4.0	64
8	Broadband high-performance electromagnetic wave absorption of Co-doped NiZn ferrite/polyaniline on MXenes. Ceramics International, 2020, 46, 10006-10015.	2.3	64
9	Excellent microwave absorption property of nano-Ni coated hollow silicon carbide core-shell spheres. Applied Surface Science, 2020, 508, 145261.	3.1	61
10	Studies of Z-scheme WO3-TiO2/Cu2ZnSnS4 ternary nanocomposite with enhanced CO2 photoreduction under visible light irradiation. Journal of CO2 Utilization, 2020, 37, 260-271.	3.3	61
11	Effect of Pt/TiO2 interface on room temperature hydrogen sensing performance of memristor type Pt/TiO2/Pt structure. Sensors and Actuators B: Chemical, 2017, 253, 1043-1054.	4.0	59
12	Characterization and hydrogen gas sensing properties of TiO2 thin films prepared by sol–gel method. Applied Surface Science, 2012, 259, 270-275.	3.1	58
13	The effect of Ag nanoparticles content on dielectric and microwave absorption properties of β-SiC. Ceramics International, 2020, 46, 5788-5798.	2.3	57
14	The effect of Co-doping on the humidity sensing properties of ordered mesoporous TiO 2. Applied Surface Science, 2017, 412, 638-647.	3.1	56
15	Acetone sensing applications of Ag modified TiO2 porous nanoparticles synthesized via facile hydrothermal method. Applied Surface Science, 2020, 533, 147383.	3.1	52
16	Trends in sputter deposited tungsten oxide structures for electrochromic applications: A review. Ceramics International, 2020, 46, 23295-23313.	2.3	50
17	Recent advances in the fabrication of 2D metal oxides. IScience, 2022, 25, 103598.	1.9	45
18	The effect of polymerization temperature and reaction time on microwave absorption properties of Co-doped ZnNi ferrite/polyaniline composites. RSC Advances, 2018, 8, 29344-29355.	1.7	41

#	Article	IF	CITATIONS
19	Recent advances of atomically thin 2D heterostructures in sensing applications. Nano Today, 2021, 40, 101287.	6.2	41
20	Synthesis and high-performance microwave absorption of reduced graphene oxide/Co-doped ZnNi ferrite/polyaniline composites. Materials Letters, 2019, 236, 456-459.	1.3	36
21	Improving the humidity sensing below 30% RH of TiO2 with GO modification. Materials Research Bulletin, 2018, 99, 124-131.	2.7	34
22	The critical role of hydroxyl groups in water vapor sensing of graphene oxide. Nanoscale Advances, 2019, 1, 1319-1330.	2.2	34
23	Hydrogen gas sensors based on nanocrystalline TiO2 thin films. Open Physics, 2011, 9, .	0.8	33
24	Remarkable Improvement in Hydrogen Sensing Characteristics with Pt/TiO ₂ Interface Control. ACS Sensors, 2019, 4, 2997-3006.	4.0	31
25	Low dimensional materials for glucose sensing. Nanoscale, 2021, 13, 11017-11040.	2.8	30
26	Cost-effective fabrication of polycrystalline TiO2 with tunable n/p response for selective hydrogen monitoring. Sensors and Actuators B: Chemical, 2018, 274, 10-21.	4.0	29
27	The effect of Nb doping on hydrogen gas sensing properties of capacitor-like Pt/Nb-TiO2/Pt hydrogen gas sensors. Journal of Alloys and Compounds, 2019, 806, 1052-1059.	2.8	27
28	Improved acetone sensing characteristics of TiO2 nanobelts with Ag modification. Journal of Alloys and Compounds, 2021, 887, 161312.	2.8	27
29	Hydrogen sensing and adsorption kinetics on ordered mesoporous anatase TiO2 surface. Applied Surface Science, 2020, 500, 144219.	3.1	22
30	Investigating the influence of Al-doping and background humidity on NO ₂ sensing characteristics of magnetron-sputtered SnO ₂ sensors. Journal of Sensors and Sensor Systems, 2015, 4, 271-280.	0.6	21
31	Facile one-step synthesis of TiO2 microrods surface modified with Cr2O3 nanoparticles for acetone sensor applications. Journal of Materials Science: Materials in Electronics, 2018, 29, 14546-14556.	1.1	20
32	Facile in-situ fabrication of TiO2-Cu2ZnSnS4 hybrid nanocomposites and their photoreduction of CO2 to CO/CH4 generation. Applied Surface Science, 2020, 529, 147005.	3.1	19
33	Facile synthesis of nitrogen doped ordered mesoporous TiO2 with improved humidity sensing properties. Journal of Alloys and Compounds, 2018, 742, 814-821.	2.8	18
34	Strong biaxial texture and polymorph nature in TiO2 thin film formed by ex-situ annealing on c-plane Al2O3 surface. Journal of Crystal Growth, 2012, 338, 118-124.	0.7	17
35	In-situ synthesis of mesoporous TiO2-Cu2ZnSnS4 heterostructured nanocomposite for enhanced photocatalytic degradation. Applied Surface Science, 2020, 505, 144540.	3.1	16
36	Sensing mechanism of low temperature NO2 sensing with top–bottom electrode (TBE) geometry. Sensors and Actuators B: Chemical, 2016, 236, 874-884.	4.0	14

#	Article	IF	CITATIONS
37	Influence of applied voltage on optimal performance and durability of tungsten and vanadium oxide co-sputtered thin films for electrochromic applications. Applied Surface Science, 2021, 536, 147873.	3.1	14
38	Strongly coupled Ag/TiO2 heterojunction: from one-step facile synthesis to effective and stable ethanol sensing performances. Journal of Materials Science: Materials in Electronics, 2018, 29, 19219-19227.	1.1	13
39	Effect of Post-Deposition Annealing Treatment on the Structural, Optical and Gas Sensing Properties of TiO ₂ Thin Films. Key Engineering Materials, 0, 510-511, 467-474.	0.4	12
40	Sol-gel Synthesis of TiO2 With p-Type Response to Hydrogen Gas at Elevated Temperature. Frontiers in Materials, 2019, 6, .	1.2	12
41	Thermally reduced graphene oxide showing n- to p-type electrical response inversion with water adsorption. Applied Surface Science, 2020, 531, 147285.	3.1	12
42	Low-cost fabrication of highly sensitive room temperature hydrogen sensor based on ordered mesoporous Co-doped TiO2 structure. Applied Physics Letters, 2017, 111, .	1.5	11
43	In-situ synthesis of Cu2ZnSnS4/g-C3N4 heterojunction for superior visible light-driven CO2 reduction. Journal of Physics and Chemistry of Solids, 2022, 165, 110694.	1.9	11
44	Integrated Performance Monitoring of Threeâ€Way Catalytic Converters by Selfâ€Regenerative and Adaptive Highâ€Temperature Catalyst and Sensors. Advanced Engineering Materials, 2016, 18, 728-738.	1.6	9
45	Influence of nanoscale TiO2 film thickness on gas sensing properties of capacitor-like Pt/TiO2/Pt sensing structure. Applied Surface Science, 2020, 499, 143909.	3.1	9
46	Highly Sensitive Hydrogen Semiconductor Gas Sensor Operating at Room Temperature. Procedia Engineering, 2015, 120, 618-622.	1.2	7
47	A Double Layer Sensing Electrode "BaTi(1-X)RhxO3/Al-Doped TiO2―for NO2 Detection above 600 °C. Chemosensors, 2016, 4, 8.	1.8	6
48	Effective use of biomass ash as an ultra-high humidity sensor. Journal of Materials Science: Materials in Electronics, 2018, 29, 18502-18510.	1.1	6
49	Adsorption Kinetics of NO2 Gas on Pt/Cr-TiO2/Pt-Based Sensors. Chemosensors, 2022, 10, 11.	1.8	6
50	Structure of Hydrogen Gas Sensing TiO ₂ Thin Films Prepared by Sol-Gel Method and their Comparison with Magnetron Sputtered Films. Key Engineering Materials, 2013, 543, 293-296.	0.4	5
51	Study on mechanical properties and X-band microwave absorption properties of ER/SiCp/SiCf ternary composites. Journal of Magnetism and Magnetic Materials, 2021, 540, 168450.	1.0	5
52	Adsorption kinetics and photocatalytic properties of Cu2ZnSnS4@porous g-C3N4 for contaminant removal. Materials Science in Semiconductor Processing, 2022, 150, 106912.	1.9	5
53	Electromagnetic and microwave absorption performance of Ni0.4Zn0.4Co0.2Fe2O4/polymethacrylimide foam synthesized via polymerization. Journal of Materials Science: Materials in Electronics, 2019, 30, 16991-17002.	1.1	4
54	Investigations on niobium tungsten oxide thin films for optical modulation. Journal of Materials Science, 2022, 57, 5361-5373.	1.7	3

#	Article	IF	CITATIONS
55	Low Temperature Gas Sensing with Novel Top-bottom Electrode Configuration. Procedia Engineering, 2015, 120, 245-248.	1.2	2
56	IR filtering properties of TiAlN/Cu/TiAlN coatings. Materials Research Express, 2019, 6, 055511.	0.8	2
57	Properties of Metal Oxide Gas Sensors with Electrodes Placed below the Sensing Layer. Key Engineering Materials, 2014, 605, 527-530.	0.4	1
58	Structure and Epitaxial Behavior of Rutile TiO ₂ Thin Films Prepared by DC Magnetron Sputtering and <i>Ex-Situ</i> Annealing. Key Engineering Materials, 0, 605, 487-490.	0.4	1
59	P2.0.5 Studies of Hydrogen Gas Sensing Properties of Anatase TiO2 Thin Films Prepared by Magnetron Sputtering. , 2012, , .		1
60	GO-modified P(VDF-TrFE) fibrous membrane for humidity sensing applications in vacuum insulation panels. Materials Letters, 2022, 313, 131773.	1.3	1
61	Metal oxide gas sensors on the nanoscale. , 2014, , .		0