Florence Lecouturier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6443021/publications.pdf

Version: 2024-02-01

44 papers

1,126 citations

430754 18 h-index 33 g-index

46 all docs 46 docs citations

times ranked

46

959 citing authors

#	Article	IF	CITATIONS
1	Influence of alloying on the tensile strength and electrical resistivity of silver nanowire: copper composites macroscopic wires. Journal of Materials Science, 2021, 56, 4884-4895.	1.7	5
2	High Strength-High Conductivity Silver Nanowire-Copper Composite Wires by Spark Plasma Sintering and Wire-Drawing for Non-Destructive Pulsed Fields. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-4.	1.1	1
3	Nanostructured 1% silver-copper composite wires with a high tensile strength and a high electrical conductivity. Materials Science & Degineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 761, 138048.	2.6	15
4	Multiscale modeling of the elasto-plastic behavior of architectured and nanostructured Cu-Nb composite wires and comparison with neutron diffraction experiments. International Journal of Plasticity, 2019, 122, 1-30.	4.1	21
5	Design and Tests of the 100-T Triple Coil at LNCMI. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.1	28
6	High strength-high conductivity carbon nanotube-copper wires with bimodal grain size distribution by spark plasma sintering and wire-drawing. Scripta Materialia, 2017, 137, 78-82.	2.6	18
7	Multiscale modeling of the elastic behavior of architectured and nanostructured Cu–Nb composite wires. International Journal of Solids and Structures, 2017, 121, 148-162.	1.3	25
8	Multiscale modeling of the anisotropic electrical conductivity of architectured and nanostructured Cu-Nb composite wires and experimental comparison. Acta Materialia, 2017, 141, 131-141.	3.8	29
9	High strength – High conductivity double-walled carbon nanotube – Copper composite wires. Carbon, 2016, 96, 212-215.	5.4	65
10	High strength–high conductivity nanostructured copper wires prepared by spark plasma sintering and room-temperature severe plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 649, 209-213.	2.6	19
11	Mechanical properties of thick 304L stainless steel deposits processed by He cold spray. Surface and Coatings Technology, 2015, 277, 74-80.	2.2	63
12	Dog-bone copper specimens prepared by one-step spark plasma sintering. Journal of Materials Science, 2015, 50, 7364-7373.	1.7	27
13	Modélisation multi-échelle du comportement électrique de nano-composites Cu-Nb. Materiaux Et Techniques, 2015, 103, 309.	0.3	7
14	Comparison of the Properties of Cold-Sprayed Cu-0.5Cr-0.05Zr Alloys after Various Heat Treatments Versus Forged and Vacuum Plasma-Sprayed Alloys. Journal of Thermal Spray Technology, 2014, 23, 486-491.	1.6	14
15	Mechanical properties of Cold Spray deposited NARloy-Z copper alloy. Surface and Coatings Technology, 2013, 232, 652-657.	2.2	16
16	Special Coils Development at the National High Magnetic Field Laboratory in Toulouse. Journal of Low Temperature Physics, 2013, 170, 442-446.	0.6	21
17	Copper/Stainless Steel Polyhelix Magnets. IEEE Transactions on Applied Superconductivity, 2012, 22, 4300404-4300404.	1.1	10
18	Cu/Nb Nanocomposite Wires Processed by Severe Plastic Deformation for Applications in High Pulsed Magnets: Effects of the Multi-Scale Microstructure on the Mechanical Properties. IEEE Transactions on Applied Superconductivity, 2012, 22, 6900104-6900104.	1.1	16

#	Article	IF	Citations
19	Cu–Nb Nanocomposite Wires Processed by Severe Plastic Deformation: Effects of the Multiâ€Scale Microstructure and Internal Stresses on Elasticâ€Plastic Properties. Advanced Engineering Materials, 2012, 14, 998-1003.	1.6	16
20	Microstructure and texture of copper/niobium composites processed by ECAE. International Journal of Material Forming, 2012, 5, 121-127.	0.9	4
21	Metallic composites processed via extreme deformation: Toward the limits of strength in bulk materials. MRS Bulletin, 2010, 35, 982-991.	1.7	180
22	Microstructure and texture of copper/niobium composites processed by ECAE. International Journal of Material Forming, 2010, 3, 1071-1074.	0.9	3
23	Thermal stability of nanocomposite metals: In situ observation of anomalous residual stress relaxation during annealing under synchrotron radiation. Acta Materialia, 2010, 58, 6504-6512.	3.8	28
24	A new criterion for elasto-plastic transition in nanomaterials: Application to size and composite effects on Cu–Nb nanocomposite wires. Acta Materialia, 2009, 57, 3157-3169.	3.8	96
25	New Developments at the National Pulsed Field Laboratory in Toulouse. IEEE Transactions on Applied Superconductivity, 2008, 18, 592-595.	1.1	9
26	Small scale mechanical properties of polycrystalline materials: in situ diffraction studies. International Journal of Nanotechnology, 2008, 5, 609.	0.1	4
27	Plasticity Mechanisms in Multi-Scale Copper-Based Nanocomposite Wires. Materials Science Forum, 2007, 539-543, 814-819.	0.3	1
28	Evidence of internal Bauschinger test in nanocomposite wires duringin situmacroscopic tensile cycling under synchrotron beam. Applied Physics Letters, 2007, 90, 241907.	1.5	28
29	Plasticity of multiscale nanofilamentary Cuâ^•Nb composite wires during in situ neutron diffraction: Codeformation and size effect. Applied Physics Letters, 2006, 88, 191906.	1.5	53
30	Effects of size and geometry on the plasticity of high-strength copper/tantalum nanofilamentary conductors obtained by severe plastic deformation. Acta Materialia, 2006, 54, 1063-1075.	3.8	36
31	Elaboration by Severe Plastic Deformation, Microstructural and Mechanical Study of Cu/X (X =Ta or) Tj ETQq1 1 639-644.	0.784314 0.3	rgBT /Overlo 3
32	Size Effect in the Plasticity of Multiscale Nanofilamentary Cu/Nb Composite Wires During in-situ Tensile Tests Under Neutron Beam. Materials Research Society Symposia Proceedings, 2006, 977, 1.	0.1	1
33	Identification of Aging Mechanisms for Non-Destructive Pulsed Magnets Operating in the 60 T Range. IEEE Transactions on Applied Superconductivity, 2004, 14, 1237-1240.	1.1	8
34	Perspectives for Cu/SS macrocomposite and Cu/X nanofilamentary conductors used in non-destructive high-field pulsed magnets under cryogenic conditions. Physica B: Condensed Matter, 2004, 346-347, 582-588.	1.3	13
35	Established and Emerging Materials for use as High-Field Magnet Conductors. Advanced Engineering Materials, 2004, 6, 290-297.	1.6	59
36	Experimental analysis of mechanical and electrical aging in pulsed magnets. Physica B: Condensed Matter, 2004, 346-347, 589-593.	1.3	3

3

#	Article	IF	CITATION
37	Low Temperature Physics at the Laboratoire National des Champs Magnétiques Pulsés in Toulouse. Journal of Low Temperature Physics, 2003, 133, 97-120.	0.6	1
38	Pulsed magnetic fields in Toulouse – past, present and future. Physica B: Condensed Matter, 2001, 294-295, 579-584.	1.3	21
39	Ultra high strength nanofilamentary conductors: the way to reach extreme properties. Physica B: Condensed Matter, 2001, 294-295, 648-652.	1.3	17
40	Ultra high strength nanocomposite conductors for pulsed magnet windings. IEEE Transactions on Applied Superconductivity, 2000, 10, 1269-1272.	1.1	17
41	Axial and radial interface instabilities of copper/tantalum cylindrical conductors. Acta Materialia, 1999, 47, 2761-2768.	3.8	7
42	FIM and 3D atom probe analysis of Cu/Nb nanocomposite wires. Scripta Materialia, 1999, 11, 1031-1039.	0.5	22
43	Microstructural characterization of high strength and high conductivity nanocomposite wires. Scripta Materialia, 1996, 34, 1067-1073.	2.6	85
44	High-strength materials: in-situ investigations of dislocation behaviour in Cu-Nb multifilamentary nanostructured composites. , 0, .		5