
Bonnie G Waring

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6442753/publications.pdf Version: 2024-02-01

RONNIFÂC WARING

#	Article	IF	CITATIONS
1	Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils. Biogeochemistry, 2014, 117, 101-113.	1.7	340
2	Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: insights from metaâ€analysis and theoretical models. Ecology Letters, 2013, 16, 887-894.	3.0	327
3	Nitrogen limitation of decomposition and decay: How can it occur?. Global Change Biology, 2018, 24, 1417-1427.	4.2	281
4	Stoichiometry of microbial carbon use efficiency in soils. Ecological Monographs, 2016, 86, 172-189.	2.4	253
5	Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes?. Environmental Research Letters, 2017, 12, 023001.	2.2	210
6	Historical climate controls soil respiration responses to current soil moisture. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6322-6327.	3.3	136
7	Pervasive and strong effects of plants on soil chemistry: a meta-analysis of individual plant â€~Zinke' effects. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151001.	1.2	93
8	Scaleâ€dependent variation in nitrogen cycling and soil fungal communities along gradients of forest composition and age in regenerating tropical dry forests. New Phytologist, 2016, 209, 845-854.	3.5	82
9	Historical precipitation predictably alters the shape and magnitude of microbial functional response to soil moisture. Global Change Biology, 2016, 22, 1957-1964.	4.2	79
10	Exploring relationships between enzyme activities and leaf litter decomposition in a wet tropical forest. Soil Biology and Biochemistry, 2013, 64, 89-95.	4.2	75
11	Forests and Decarbonization – Roles of Natural and Planted Forests. Frontiers in Forests and Global Change, 2020, 3, .	1.0	63
12	A Meta-analysis of Climatic and Chemical Controls on Leaf Litter Decay Rates in Tropical Forests. Ecosystems, 2012, 15, 999-1009.	1.6	60
13	From pools to flow: The PROMISE framework for new insights on soil carbon cycling in a changing world. Global Change Biology, 2020, 26, 6631-6643.	4.2	57
14	Short-Term Precipitation Exclusion Alters Microbial Responses to Soil Moisture in a Wet Tropical Forest. Microbial Ecology, 2015, 69, 843-854.	1.4	46
15	Unraveling the mechanisms underlying pulse dynamics of soil respiration in tropical dry forests. Environmental Research Letters, 2016, 11, 105005.	2.2	41
16	Tropical dry forest trees and lianas differ in leaf economic spectrum traits but have overlapping water-use strategies. Tree Physiology, 2018, 38, 517-530.	1.4	40
17	Observed variation in soil properties can drive large variation in modelled forest functioning and composition during tropical forest secondary succession. New Phytologist, 2019, 223, 1820-1833.	3.5	40
18	Forest composition modifies litter dynamics and decomposition in regenerating tropical dry forest. Oecologia, 2016, 182, 287-297.	0.9	36

BONNIEÂG WARING

#	Article	IF	CITATIONS
19	Plant community responses to standâ€level nutrient fertilization in a secondary tropical dry forest. Ecology, 2019, 100, e02691.	1.5	36
20	Nutrient addition effects on tropical dry forests: a mini-review from microbial to ecosystem scales. Frontiers in Earth Science, 0, 3, .	0.8	33
21	Overlooking what is underground: Root:shoot ratios and coarse root allometric equations for tropical forests. Forest Ecology and Management, 2017, 385, 10-15.	1.4	32
22	Beyond leaf habit: generalities in plant function across 97 tropical dry forest tree species. New Phytologist, 2021, 232, 148-161.	3.5	28
23	Nitrogen, phosphorus, and cation use efficiency in stands of regenerating tropical dry forest. Oecologia, 2015, 178, 887-897.	0.9	23
24	Ecological mechanisms underlying soil bacterial responses to rainfall along a steep natural precipitation gradient. FEMS Microbiology Ecology, 2018, 94, .	1.3	23
25	Soil biogeochemistry across Central and South American tropical dry forests. Ecological Monographs, 2021, 91, e01453.	2.4	19
26	Changing perspectives on terrestrial nitrogen cycling: The importance of weathering and evolved resourceâ€use traits for understanding ecosystem responses to global change. Functional Ecology, 2019, 33, 1818-1829.	1.7	14
27	Broad-Scale Patterns of Soil Carbon (C) Pools and Fluxes Across Semiarid Ecosystems are Linked to Climate and Soil Texture. Ecosystems, 2019, 22, 742-753.	1.6	13
28	Tradeoffs in microbial carbon allocation may mediate soil carbon storage in future climates. Frontiers in Microbiology, 2013, 4, 261.	1.5	12
29	Plant–microbe interactions along a gradient of soil fertility in tropical dry forest. Journal of Tropical Ecology, 2016, 32, 314-323.	O.5	10
30	Effects of soil type and light on height growth, biomass partitioning, and nitrogen dynamics on 22 species of tropical dry forest tree seedlings: Comparisons between legumes and nonlegumes. American Journal of Botany, 2017, 104, 399-410.	0.8	9
31	Nitrogen effects on plant productivity change at decadal timeâ€scales. Global Ecology and Biogeography, 2021, 30, 2488-2499.	2.7	8
32	Traitâ€based signatures of cloud base height in a tropical cloud forest. American Journal of Botany, 2020, 107, 886-894.	0.8	5
33	A quantitative analysis of microbial community structure-function relationships in plant litter decay. IScience, 2022, 25, 104523.	1.9	5
34	Herbivory changes soil microbial communities and greenhouse gas fluxes in a high-latitude wetland. Microbial Ecology, 2022, 83, 127-136.	1.4	4
35	Climatic Controls on Soil Carbon Accumulation and Loss in a Dryland Ecosystems. Journal of Geophysical Research G: Biogeosciences, 2021, 126, .	1.3	3
36	Response to â€~Stochastic and deterministic interpretation of pool models'. Global Change Biology, 2021, 27, e11-e12.	4.2	1

#	Article	IF	CITATIONS
37	Response to "Connectivity and pore accessibility in models of soil carbon cycling― Global Change Biology, 2021, 27, e15-e16.	4.2	0