
Justin B Sambur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6442742/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiple Exciton Collection in a Sensitized Photovoltaic System. Science, 2010, 330, 63-66.	6.0	763
2	Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes. Nature, 2016, 530, 77-80.	13.7	299
3	Approaches to Single-Nanoparticle Catalysis. Annual Review of Physical Chemistry, 2014, 65, 395-422.	4.8	149
4	Photoelectrochemical Characterization of Nanocrystalline Thin-Film Cu ₂ ZnSnS ₄ Photocathodes. ACS Applied Materials & Interfaces, 2011, 3, 58-66.	4.0	110
5	Influence of Surface Chemistry on the Binding and Electronic Coupling of CdSe Quantum Dots to Single Crystal TiO ₂ Surfaces. Langmuir, 2010, 26, 4839-4847.	1.6	108
6	CdSe/ZnS Core/Shell Quantum Dot Sensitization of Low Index TiO ₂ Single Crystal Surfaces. Journal of the American Chemical Society, 2010, 132, 2130-2131.	6.6	105
7	Photooxidation of Chloride by Oxide Minerals: Implications for Perchlorate on Mars. Journal of the American Chemical Society, 2011, 133, 17521-17523.	6.6	69
8	Patternable Solvent-Processed Thermoplastic Graphite Electrodes. Journal of the American Chemical Society, 2017, 139, 12623-12631.	6.6	65
9	Bimetallic Effect of Single Nanocatalysts Visualized by Super-Resolution Catalysis Imaging. ACS Central Science, 2017, 3, 1189-1197.	5.3	65
10	Distinguishing Direct and Indirect Photoelectrocatalytic Oxidation Mechanisms Using Quantitative Single-Molecule Reaction Imaging and Photocurrent Measurements. Journal of Physical Chemistry C, 2016, 120, 20668-20676.	1.5	45
11	Plasmon-Resonant Enhancement of Photocatalysis on Monolayer WSe ₂ . ACS Photonics, 2019, 6, 787-792.	3.2	43
12	Influence of single-nanoparticle electrochromic dynamics on the durability and speed of smart windows. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12666-12671.	3.3	38
13	Sodium X-type faujasite zeolite decomposition of dimethyl methylphosphonate (DMMP) to methylphosphonate: Nucleophilic zeolite reactions I. Microporous and Mesoporous Materials, 2006, 92, 56-60.	2.2	36
14	Efficient Ultrathin Liquid Junction Photovoltaics Based on Transition Metal Dichalcogenides. Nano Letters, 2019, 19, 2960-2967.	4.5	36
15	The influence of metal work function on the barrier heights of metal/pentacene junctions. Journal of Applied Physics, 2008, 103, .	1.1	35
16	Probing Charge Carrier Transport and Recombination Pathways in Monolayer MoS ₂ /WS ₂ Heterojunction Photoelectrodes. Nano Letters, 2019, 19, 9084-9094.	4.5	30
17	Laser Annealing Improves the Photoelectrochemical Activity of Ultrathin MoSe ₂ Photoelectrodes. ACS Applied Materials & Interfaces, 2019, 11, 19207-19217.	4.0	29
18	Influence of the Substrate on the Optical and Photo-electrochemical Properties of Monolayer	4.0	24

JUSTIN B SAMBUR

#	Article	IF	CITATIONS
19	Single-Nanoflake Photo-Electrochemistry Reveals Champion and Spectator Flakes in Exfoliated MoSe ₂ Films. Journal of Physical Chemistry C, 2018, 122, 6539-6545.	1.5	23
20	Morphologies, structures, and interfacial electronic structure of perylene on Au(111). Journal of Applied Physics, 2010, 107, 063716.	1.1	17
21	Role of Photogenerated lodine on the Energy-Conversion Properties of MoSe ₂ Nanoflake Liquid Junction Photovoltaics. ACS Applied Materials & Interfaces, 2018, 10, 27780-27786.	4.0	17
22	Size Selective Photoetching of CdSe Quantum Dot Sensitizers on Single-Crystal TiO ₂ . ACS Applied Materials & Interfaces, 2014, 6, 21916-21920.	4.0	13
23	Quantifying Photocurrent Loss of a Single Particle–Particle Interface in Nanostructured Photoelectrodes. Nano Letters, 2019, 19, 958-962.	4.5	13
24	Multiple effects of the presence of water on the nucleophilic substitution reactions of NaX Faujasite zeolite with dimethyl methylphosphonate (DMMP). Microporous and Mesoporous Materials, 2008, 112, 116-124.	2.2	12
25	A Photoemission Study of the Morphology and Barrier Heights of the Interface between Chyrsene and Inert Substrates. Journal of Physical Chemistry C, 2009, 113, 1837-1849.	1.5	12
26	High-Throughput Single-Nanoparticle-Level Imaging of Electrochemical Ion Insertion Reactions. Analytical Chemistry, 2019, 91, 14983-14991.	3.2	12
27	Molecular Reaction Imaging of Single-Entity Photoelectrodes. ACS Energy Letters, 2020, 5, 1474-1486.	8.8	12
28	Interfacial Morphology and Photoelectrochemistry of Conjugated Polyelectrolytes Adsorbed on Single Crystal TiO ₂ . Langmuir, 2011, 27, 11906-11916.	1.6	11
29	Single nanoparticle photoelectrochemistry: What is next?. Journal of Chemical Physics, 2019, 151, 180901.	1.2	10
30	A Homemade Smart Phone Microscope for Single-Particle Fluorescence Microscopy. Journal of Chemical Education, 2020, 97, 471-478.	1.1	10
31	Quantifying Capacitiveâ€Like and Batteryâ€Like Charge Storage Contributions Using Singleâ€Nanoparticle Electroâ€optical Imaging. ChemElectroChem, 2020, 7, 753-760.	1.7	10
32	Surface-Facet-Dependent Electrochromic Properties of WO3 Nanorod Thin Films: Implications for Smart Windows. ACS Applied Nano Materials, 2021, 4, 3750-3759.	2.4	10
33	In Situ Studies of Photoluminescence Quenching and Photocurrent Yield in Quantum Dot Sensitized Single Crystal TiO2 and ZnO Electrodes. Journal of Physical Chemistry C, 2012, 116, 21069-21076.	1.5	9
34	Correlated Single-Molecule Reaction Imaging and Photocurrent Measurements Reveal Underlying Rate Processes in Photoelectrochemical Water Splitting. Journal of the Electrochemical Society, 2019, 166, H3286-H3293.	1.3	9
35	Ubiquitous Pentacene Monolayer on Metals Deposited onto Pentacene Films. Langmuir, 2007, 23, 11366-11368.	1.6	8
36	Single Nanoflake Photoelectrochemistry Reveals Intrananoflake Doping Heterogeneity That Explains Ensemble-Level Photoelectrochemical Behavior. ACS Applied Materials & Interfaces, 2022, 14, 22737-22746.	4.0	8

JUSTIN B SAMBUR

#	Article	IF	CITATIONS
37	Ensemble-level energy transfer measurements can reveal the spatial distribution of defect sites in semiconductor nanocrystals. Journal of Chemical Physics, 2021, 154, 054704.	1.2	5
38	Local Substrate Heterogeneity Influences Electrochemical Activity of TEM Grid-Supported Battery Particles. Frontiers in Chemistry, 2021, 9, 651248.	1.8	1
39	(Invited) Single Nanosheet Photoelectrochemistry: Probing Charge Recombination and Transport Pathways in Monolayer Transition Metal Dichalcogenide Photoelectrodes. ECS Meeting Abstracts, 2021, MA2021-01, 1782-1782.	0.0	0
40	(Invited) Scanning Photoelectrochemical Microscopy Reveals Doping Heterogeneity in Exfoliated MoS2 Nanosheets. ECS Meeting Abstracts, 2021, MA2021-01, 679-679.	0.0	0
41	Single Nanosheet Photoelectrochemistry. ECS Meeting Abstracts, 2018, , .	0.0	0
42	Photoelectrochemical Microscopy of Ultrathin Liquid Junction Solar Cells. ECS Meeting Abstracts, 2019, , .	0.0	0
43	Single Nanoparticle Electrochromism Reveals Heterogeneous Charge Storage Rates and Ion Trapping Sites in Pseudocapacitive Smart Windows. ECS Meeting Abstracts, 2019, , .	0.0	0
44	Quantifying Intercalation Pseudocapacitance Using Single Nanoparticle Electro-Optical Imaging. ECS Meeting Abstracts, 2020, MA2020-01, 1-1.	0.0	0
45	Effect of Single Particle-Particle Interface on Photoelectrodes Performance. ECS Meeting Abstracts, 2020, MA2020-01, 2539-2539.	0.0	0
46	(Invited) Single Nanosheet Photoelectrochemistry: Probing Charge Recombination and Transport Pathways in Monolayer Transition Metal Dichalcogenide Photoelectrodes. ECS Meeting Abstracts, 2020, MA2020-01, 829-829.	0.0	0
47	(Invited) Energy Level Alignment at Monolayer MoS ₂ /Electrolyte Interfaces. ECS Meeting Abstracts, 2022, MA2022-01, 864-864.	0.0	О