Jun Li

List of Publications by Citations

Source: https://exaly.com/author-pdf/6442203/jun-li-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

36,987 85 469 179 h-index g-index papers citations 44,868 7.74 517 9.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
469	Single-atom catalysis of CO oxidation using Pt1/FeOx. <i>Nature Chemistry</i> , 2011 , 3, 634-41	17.6	3489
468	Single-atom catalysts: a new frontier in heterogeneous catalysis. <i>Accounts of Chemical Research</i> , 2013 , 46, 1740-8	24.3	2437
467	Basis set exchange: a community database for computational sciences. <i>Journal of Chemical Information and Modeling</i> , 2007 , 47, 1045-52	6.1	2306
466	Heterogeneous single-atom catalysis. <i>Nature Reviews Chemistry</i> , 2018 , 2, 65-81	34.6	1624
465	Au20: a tetrahedral cluster. <i>Science</i> , 2003 , 299, 864-7	33.3	990
464	An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. <i>Nature Communications</i> , 2015 , 6, 5982	17.4	771
463	Remarkable performance of Ir1/FeO(x) single-atom catalyst in water gas shift reaction. <i>Journal of the American Chemical Society</i> , 2013 , 135, 15314-7	16.4	646
462	Design of Single-Atom Co-N Catalytic Site: A Robust Electrocatalyst for CO Reduction with Nearly 100% CO Selectivity and Remarkable Stability. <i>Journal of the American Chemical Society</i> , 2018 , 140, 421	8 ⁻¹⁶ 221	634
461	Observation of an all-boron fullerene. <i>Nature Chemistry</i> , 2014 , 6, 727-31	17.6	590
460	Hydrocarbon analogues of boron clustersplanarity, aromaticity and antiaromaticity. <i>Nature Materials</i> , 2003 , 2, 827-33	27	567
459	Planar hexagonal B(36) as a potential basis for extended single-atom layer boron sheets. <i>Nature Communications</i> , 2014 , 5, 3113	17.4	503
458	Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. <i>Nature Nanotechnology</i> , 2018 , 13, 856-861	28.7	471
457	Ultrathin rhodium nanosheets. <i>Nature Communications</i> , 2014 , 5, 3093	17.4	350
456	Fe Isolated Single Atoms on S, N Codoped Carbon by Copolymer Pyrolysis Strategy for Highly Efficient Oxygen Reduction Reaction. <i>Advanced Materials</i> , 2018 , 30, e1800588	24	338
455	Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO. <i>Nature Chemistry</i> , 2019 , 11, 222-228	17.6	337
454	Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). <i>Nano Research</i> , 2015 , 8, 2913-2924	10	324
453	Experimental observation and confirmation of icosahedral W@Au12 and Mo@Au12 molecules. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 4786-9	16.4	299

(2015-2015)

452	Highly Efficient Catalysis of Preferential Oxidation of CO in H2-Rich Stream by Gold Single-Atom Catalysts. <i>ACS Catalysis</i> , 2015 , 5, 6249-6254	13.1	290
45 ¹	Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles. Nature Communications, 2015, 6, 6511	17.4	278
450	Insight into methanol synthesis from CO2 hydrogenation on Cu(1 1 1): Complex reaction network and the effects of H2O. <i>Journal of Catalysis</i> , 2011 , 281, 199-211	7.3	274
449	Non defect-stabilized thermally stable single-atom catalyst. <i>Nature Communications</i> , 2019 , 10, 234	17.4	274
448	High-Performance RhP Electrocatalyst for Efficient Water Splitting. <i>Journal of the American Chemical Society</i> , 2017 , 139, 5494-5502	16.4	267
447	Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. <i>Nature Energy</i> , 2019 , 4, 107-114	62.3	264
446	The role of reducible oxide-metal cluster charge transfer in catalytic processes: new insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics. <i>Journal of the American Chemical Society</i> , 2013 , 135, 10673-83	16.4	251
445	The B35 cluster with a double-hexagonal vacancy: a new and more flexible structural motif for borophene. <i>Journal of the American Chemical Society</i> , 2014 , 136, 12257-60	16.4	250
444	Toward Rational Design of Oxide-Supported Single-Atom Catalysts: Atomic Dispersion of Gold on Ceria. <i>Journal of the American Chemical Society</i> , 2017 , 139, 6190-6199	16.4	240
443	Synthesis of Thermally Stable and Highly Active Bimetallic AuAg Nanoparticles on Inert Supports. <i>Chemistry of Materials</i> , 2009 , 21, 410-418	9.6	239
442	Isolated Single-Atom Pd Sites in Intermetallic Nanostructures: High Catalytic Selectivity for Semihydrogenation of Alkynes. <i>Journal of the American Chemical Society</i> , 2017 , 139, 7294-7301	16.4	238
441	PdZn Intermetallic Nanostructure with PdInPd Ensembles for Highly Active and Chemoselective Semi-Hydrogenation of Acetylene. <i>ACS Catalysis</i> , 2016 , 6, 1054-1061	13.1	234
440	Heterogeneous Fe single-cluster catalyst for ammonia synthesis via an associative mechanism. <i>Nature Communications</i> , 2018 , 9, 1610	17.4	233
439	Tuning defects in oxides at room[temperature by lithium reduction. <i>Nature Communications</i> , 2018 , 9, 1302	17.4	225
438	Synergetic Integration of Cu1.94S-ZnxCd1-xS Heteronanorods for Enhanced Visible-Light-Driven Photocatalytic Hydrogen Production. <i>Journal of the American Chemical Society</i> , 2016 , 138, 4286-9	16.4	212
437	Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. <i>Nature Chemistry</i> , 2020 , 12, 764-772	17.6	207
436	Noble gas-actinide compounds: complexation of the CUO molecule by Ar, Kr, and Xe atoms in noble gas matrices. <i>Science</i> , 2002 , 295, 2242-5	33.3	205
435	Experimental and theoretical evidence of an axially chiral borospherene. <i>ACS Nano</i> , 2015 , 9, 754-60	16.7	195

434	Constructing NiCo/FeO Heteroparticles within MOF-74 for Efficient Oxygen Evolution Reactions. Journal of the American Chemical Society, 2018 , 140, 15336-15341	16.4	193
433	Ultrahigh-Loading of Ir Single Atoms on NiO Matrix to Dramatically Enhance Oxygen Evolution Reaction. <i>Journal of the American Chemical Society</i> , 2020 , 142, 7425-7433	16.4	186
432	Catalysis on singly dispersed bimetallic sites. <i>Nature Communications</i> , 2015 , 6, 7938	17.4	182
431	Regulating the coordination structure of single-atom Fe-NC catalytic sites for benzene oxidation. <i>Nature Communications</i> , 2019 , 10, 4290	17.4	173
430	Breaking Long-Range Order in Iridium Oxide by Alkali Ion for Efficient Water Oxidation. <i>Journal of the American Chemical Society</i> , 2019 , 141, 3014-3023	16.4	172
429	Cooperative CO2-to-ethanol conversion via enriched intermediates at moleculelhetal catalyst interfaces. <i>Nature Catalysis</i> , 2020 , 3, 75-82	36.5	164
428	Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. <i>Nature Energy</i> , 2020 , 5, 478-486	62.3	163
427	A Durable Nickel Single-Atom Catalyst for Hydrogenation Reactions and Cellulose Valorization under Harsh Conditions. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 7071-7075	16.4	163
426	Surface Single-Cluster Catalyst for N-to-NH Thermal Conversion. <i>Journal of the American Chemical Society</i> , 2018 , 140, 46-49	16.4	163
425	Design of Efficient Catalysts with Double Transition Metal Atoms on C2N Layer. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 1750-5	6.4	155
424	Shape control of CdSe nanocrystals with zinc blende structure. <i>Journal of the American Chemical Society</i> , 2009 , 131, 16423-9	16.4	144
423	Sn12(2-): stannaspherene. <i>Journal of the American Chemical Society</i> , 2006 , 128, 8390-1	16.4	140
422	Unraveling the coordination structure-performance relationship in Pt/FeO single-atom catalyst. <i>Nature Communications</i> , 2019 , 10, 4500	17.4	137
421	Identification of an iridium-containing compound with a formal oxidation state of IX. <i>Nature</i> , 2014 , 514, 475-7	50.4	137
420	Evidence of significant covalent bonding in Au(CN)(2)(-). <i>Journal of the American Chemical Society</i> , 2009 , 131, 16368-70	16.4	137
419	Icosahedral gold cage clusters: M@Au12- (M=V, Nb, and Ta). <i>Journal of Chemical Physics</i> , 2004 , 121, 836	593791	127
418	Theoretical and Experimental Investigations on Single-Atom Catalysis: Ir1/FeOx for CO Oxidation. Journal of Physical Chemistry C, 2014 , 118, 21945-21951	3.8	126
417	Theoretical Understandings of Graphene-based Metal Single-Atom Catalysts: Stability and Catalytic Performance. <i>Chemical Reviews</i> , 2020 , 120, 12315-12341	68.1	125

(2019-2005)

416	Experimental and theoretical investigation of the electronic and geometrical structures of the Au32 cluster. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 7119-23	16.4	124
415	CO Oxidation on Au/TiO2: Condition-Dependent Active Sites and Mechanistic Pathways. <i>Journal of the American Chemical Society</i> , 2016 , 138, 10467-76	16.4	123
414	Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal overall water splitting. <i>Nature Communications</i> , 2019 , 10, 4875	17.4	119
413	Observation and characterization of the smallest borospherene, B28(-) and B28. <i>Journal of Chemical Physics</i> , 2016 , 144, 064307	3.9	119
412	From planar boron clusters to borophenes and metalloborophenes. <i>Nature Reviews Chemistry</i> , 2017 , 1,	34.6	118
411	Noble gas-actinide complexes of the CUO molecule with multiple Ar, Kr, and Xe atoms in noble-gas matrices. <i>Journal of the American Chemical Society</i> , 2003 , 125, 3126-39	16.4	117
410	[BIP: a quasiplanar chiral boron cluster. Angewandte Chemie - International Edition, 2014, 53, 5540-5	16.4	116
409	Bimetallic Au P d Alloy Catalysts for N2O Decomposition: Effects of Surface Structures on Catalytic Activity. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 6222-6232	3.8	116
408	Theoretical understanding of the stability of single-atom catalysts. <i>National Science Review</i> , 2018 , 5, 638-641	10.8	111
407	Size-dependent dynamic structures of supported gold nanoparticles in CO oxidation reaction condition. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 7700-7705	11.5	109
406	Pd(2)@Sn(18)(4-): fusion of two endohedral stannaspherenes. <i>Journal of the American Chemical Society</i> , 2007 , 129, 9560-1	16.4	109
405	Pb12 2-: plumbaspherene. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 10169-72	2.8	105
404	Reaction of Laser-Ablated Uranium Atoms with CO: Infrared Spectra of the CUO, CUO-, OUCCO, $(\mathbb{Z}\text{-C2})\text{UO2}$, and $\text{U(CO)}x$ (x = 1 \mathbb{B}) Molecules in Solid Neon. <i>Journal of the American Chemical Society</i> , 1999 , 121, 9712-9721	16.4	103
403	Electronic structure differences in ZrO2 vs HfO2. <i>Journal of Physical Chemistry A</i> , 2005 , 109, 11521-5	2.8	102
402	Conversion of PtNi alloy from disordered to ordered for enhanced activity and durability in methanol-tolerant oxygen reduction reactions. <i>Nano Research</i> , 2015 , 8, 2777-2788	10	101
401	Theoretical Investigations of Pt1@CeO2 Single-Atom Catalyst for CO Oxidation. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 11281-11289	3.8	100
400	Endohedral stannaspherenes M@Sn12(-): a rich class of stable molecular cage clusters. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 742-5	16.4	100
399	Rh single atoms on TiO dynamically respond to reaction conditions by adapting their site. <i>Nature Communications</i> , 2019 , 10, 4488	17.4	99

398	Recent advances in computational modeling and simulations on the An(III)/Ln(III) separation process. <i>Coordination Chemistry Reviews</i> , 2012 , 256, 1406-1417	23.2	98
397	Au34-: A Fluxional CoreBhell Cluster. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 8228-8232	3.8	98
396	A Supramolecular Radical Dimer: High-Efficiency NIR-II Photothermal Conversion and Therapy. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 15526-15531	16.4	97
395	Unique CO chemisorption properties of gold hexamer: Au6(CO)n- (n = 0-3). <i>Journal of the American Chemical Society</i> , 2005 , 127, 12098-106	16.4	96
394	Toward the Solution Synthesis of the Tetrahedral Au20 Cluster. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 12259-12263	3.4	96
393	Maximizing the Number of Interfacial Sites in Single-Atom Catalysts for the Highly Selective, Solvent-Free Oxidation of Primary Alcohols. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 7795-7	7 7 9 9	93
392	Atomically Dispersed Ruthenium Species Inside Metal-Organic Frameworks: Combining the High Activity of Atomic Sites and the Molecular Sieving Effect of MOFs. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 4271-4275	16.4	92
391	Theoretical investigations of the catalytic role of water in propene epoxidation on gold nanoclusters: A hydroperoxyl-mediated pathway. <i>Nano Research</i> , 2011 , 4, 131-142	10	92
390	Coordination engineering of iridium nanocluster bifunctional electrocatalyst for highly efficient and pH-universal overall water splitting. <i>Nature Communications</i> , 2020 , 11, 4246	17.4	92
389	Observation of a metal-centered B-Ta@B tubular molecular rotor and a perfect Ta@B boron drum with the record coordination number of twenty. <i>Chemical Communications</i> , 2017 , 53, 1587-1590	5.8	90
388	Probing the structures and bonding of size-selected boron and doped-boron clusters. <i>Chemical Society Reviews</i> , 2019 , 48, 3550-3591	58.5	90
387	On the Nature of Support Effects of Metal Dioxides MO2 (M = Ti, Zr, Hf, Ce, Th) in Single-Atom Gold Catalysts: Importance of Quantum Primogenic Effect. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 17514-	.17526	88
386	A Water-Promoted Mechanism of Alcohol Oxidation on a Au(111) Surface: Understanding the Catalytic Behavior of Bulk Gold. <i>ACS Catalysis</i> , 2013 , 3, 1693-1699	13.1	87
385	Formation and characterization of the boron dicarbonyl complex [B(CO)2](-). <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 11078-83	16.4	86
384	Electronic Structure of Cycloheptatrienyl Sandwich Compounds of Actinides: An(🛛 -C7H7)2 (An = Th, Pa, U, Np, Pu, Am). <i>Journal of the American Chemical Society</i> , 1997 , 119, 9021-9032	16.4	84
383	Manganese-centered tubular boron cluster - MnB16 (-): A new class of transition-metal molecules. Journal of Chemical Physics, 2016 , 144, 154310	3.9	84
382	Selective photoelectrochemical oxidation of glycerol to high value-added dihydroxyacetone. <i>Nature Communications</i> , 2019 , 10, 1779	17.4	83
381	Thermodynamic studies and hydride transfer reactions from a rhodium complex to BX3 compounds. <i>Journal of the American Chemical Society</i> , 2009 , 131, 14454-65	16.4	82

380	Trivalent actinide and lanthanide separations by tetradentate nitrogen ligands: a quantum chemistry study. <i>Inorganic Chemistry</i> , 2011 , 50, 9230-7	5.1	81
379	Significant interactions between uranium and noble-gas atoms: coordination of the UO2+ cation by Ne, Ar, Kr, and Xe atoms. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 2554-7	16.4	80
378	Isolated Ni Atoms Dispersed on Ru Nanosheets: High-Performance Electrocatalysts toward Hydrogen Oxidation Reaction. <i>Nano Letters</i> , 2020 , 20, 3442-3448	11.5	80
377	Identification of the Electronic and Structural Dynamics of Catalytic Centers in Single-Fe-Atom Material. <i>CheM</i> , 2020 , 6, 3440-3454	16.2	79
376	Constructing High-Loading Single-Atom/Cluster Catalysts via an Electrochemical Potential Window Strategy. <i>Journal of the American Chemical Society</i> , 2020 , 142, 3375-3383	16.4	78
375	Competition between drum and quasi-planar structures in RhB: motifs for metallo-boronanotubes and metallo-borophenes. <i>Chemical Science</i> , 2016 , 7, 7020-7027	9.4	78
374	High Uptake of ReO and CO Conversion by a Radiation-Resistant Thorium-Nickle [Th Ni] Nanocage-Based Metal-Organic Framework. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 6022-	6 624	77
373	MOF-Confined Sub-2 nm Atomically Ordered Intermetallic PdZn Nanoparticles as High-Performance Catalysts for Selective Hydrogenation of Acetylene. <i>Advanced Materials</i> , 2018 , 30, e1801878	24	77
372	On the structure and chemical bonding of tri-tungsten oxide clusters W3On- and W3On (n=7-10): W3O8 as a potential molecular model for O-deficient defect sites in tungsten oxides. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 85-92	2.8	75
371	Density functional theory investigations on the catalytic mechanisms of hydrazine decompositions on Ir(1 1 1). <i>Catalysis Today</i> , 2011 , 165, 80-88	5.3	74
370	Formation of unprecedented actinide triple bond carbon in uranium methylidyne molecules. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18919-24	11.5	74
369	A multicentre-bonded [Zn(I)]8 cluster with cubic aromaticity. <i>Nature Communications</i> , 2015 , 6, 6331	17.4	73
368	3-Fold-interpenetrated uranium-organic frameworks: new strategy for rationally constructing three-dimensional uranyl organic materials. <i>Inorganic Chemistry</i> , 2012 , 51, 3103-7	5.1	73
367	On the electronic structure of molecular UO2 in the presence of Ar atoms: evidence for direct U-Ar bonding. <i>Journal of the American Chemical Society</i> , 2004 , 126, 3424-5	16.4	73
366	DFT+U Study on the Localized Electronic States and Their Potential Role During H2O Dissociation and CO Oxidation Processes on CeO2(111) Surface. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 23082-23	1989	71
365	Low-lying isomers of the B9(-) boron cluster: the planar molecular wheel versus three-dimensional structures. <i>Journal of Chemical Physics</i> , 2008 , 129, 024302	3.9	71
364	The Planar CoB18 (-) Cluster as a Motif for Metallo-Borophenes. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 7358-63	16.4	71
363	TGMin: A global-minimum structure search program based on a constrained basin-hopping algorithm. <i>Nano Research</i> , 2017 , 10, 3407-3420	10	68

362	Shape control of CoO and LiCoO2 nanocrystals. <i>Nano Research</i> , 2010 , 3, 1-7	10	67
361	The OH radical-H2O molecular interaction potential. <i>Journal of Chemical Physics</i> , 2006 , 124, 224318	3.9	66
360	Experimental and theoretical characterization of superoxide complexes [W2O6(O2-)] and [W3O9(O2-)]: models for the interaction of O2 with reduced W Sites on tungsten oxide surfaces. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 657-60	16.4	65
359	Electronic and structural evolution and chemical bonding in ditungsten oxide clusters: $W2O(n)$ - and $W2O(n)$ (n = 1-6). Journal of Physical Chemistry A, 2005 , 109, 6019-30	2.8	64
358	Symmetrical clusters of carbon and boron. <i>Chemical Physics Letters</i> , 1993 , 201, 465-469	2.5	64
357	Highly active enzymethetal nanohybrids synthesized in proteinpolymer conjugates. <i>Nature Catalysis</i> , 2019 , 2, 718-725	36.5	60
356	Synergistic effect between undercoordinated platinum atoms and defective nickel hydroxide on enhanced hydrogen evolution reaction in alkaline solution. <i>Nano Energy</i> , 2018 , 48, 590-599	17.1	60
355	Theoretical investigations of non-noble metal single-atom catalysis: Ni1/FeOx for CO oxidation. <i>Catalysis Science and Technology</i> , 2016 , 6, 6886-6892	5.5	60
354	New mechanistic pathways for CO oxidation catalyzed by single-atom catalysts: Supported and doped Au1/ThO2. <i>Nano Research</i> , 2016 , 9, 3868-3880	10	60
353	A Ligand-Protected Golden Fullerene: The Dipyridylamido Au Nanocluster. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 5906-5909	16.4	60
352	Recent progresses of global minimum searches of nanoclusters with a constrained Basin-Hopping algorithm in the TGMin program. <i>Computational and Theoretical Chemistry</i> , 2017 , 1107, 57-65	2	59
351	Observation of highly stable and symmetric lanthanide octa-boron inverse sandwich complexes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E6972-E6977	,11.5	59
350	Unusual Selectivity of Gold Catalysts for Hydrogenation of 1,3-Butadiene toward cis-2-Butene: A Joint Experimental and Theoretical Investigation. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 3131-3139	3.8	59
349	Reactions of Laser-Ablated U and Th with CO2: Neon Matrix Infrared Spectra and Density Functional Calculations of OUCO, OThCO, and Other Products. <i>Journal of the American Chemical Society</i> , 2000 , 122, 11440-11449	16.4	59
348	Relativistic Density Functional Study of the Geometry, Electronic Transitions, Ionization Energies, and Vibrational Frequencies of Protactinocene, Pa(IB-C8H8)2. <i>Journal of the American Chemical Society</i> , 1998 , 120, 11456-11466	16.4	59
347	Synergy of the catalytic activation on Ni and the CeO2IIiO2/Ce2Ti2O7 stoichiometric redox cycle for dramatically enhanced solar fuel production. <i>Energy and Environmental Science</i> , 2019 , 12, 767-779	35.4	57
346	A Supramolecularly Activated Radical Cation for Accelerated Catalytic Oxidation. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8933-7	16.4	57
345	A systematic theoretical study on FeOx-supported single-atom catalysts: M1/FeOx for CO oxidation. <i>Nano Research</i> , 2018 , 11, 1599-1611	10	56

(2002-2002)

344	Noble gas-actinide compounds: evidence for the formation of distinct $CUO(Ar)(4-n)(Xe)(n)$ and $CUO(Ar)(4-n)(Kr)(n)$ (n = 1, 2, 3, 4) complexes. <i>Journal of the American Chemical Society</i> , 2002 , 124, 9016-	.7 6.4	56	
343	Uranyl-glycine-water complexes in solution: comprehensive computational modeling of coordination geometries, stabilization energies, and luminescence properties. <i>Inorganic Chemistry</i> , 2011 , 50, 2082-93	5.1	55	
342	Remarkable second-order optical nonlinearity of nano-sized Au20 cluster: a TDDFT study. <i>Chemical Physics Letters</i> , 2004 , 388, 353-357	2.5	55	
341	Mechanistic Insights into Propene Epoxidation with O2H2O Mixture on Au7/HAl2O3: A Hydroproxyl Pathway from ab Initio Molecular Dynamics Simulations. <i>ACS Catalysis</i> , 2016 , 6, 2525-2535	13.1	54	
340	Remarkable active-site dependent HO promoting effect in CO oxidation. <i>Nature Communications</i> , 2019 , 10, 3824	17.4	53	
339	Quantum-chemical investigation of Buckminsterfullerene and related carbon clusters (I): The electronic structure and UV spectra of Buckminsterfullerene, and other C60 cages. <i>International Journal of Quantum Chemistry</i> , 1990 , 37, 599-607	2.1	53	
338	Atomically-precise dopant-controlled single cluster catalysis for electrochemical nitrogen reduction. <i>Nature Communications</i> , 2020 , 11, 4389	17.4	52	
337	A highly efficient Fenton-like catalyst based on isolated diatomic Fe-Co anchored on N-doped porous carbon. <i>Chemical Engineering Journal</i> , 2021 , 404, 126376	14.7	52	
336	Identification of activity trends for CO oxidation on supported transition-metal single-atom catalysts. <i>Catalysis Science and Technology</i> , 2017 , 7, 5860-5871	5.5	51	
335	Catalysis on Singly Dispersed Rh Atoms Anchored on an Inert Support. ACS Catalysis, 2018, 8, 110-121	13.1	51	
334	Formation and Characterization of the Boron Dicarbonyl Complex [B(CO)2][[Angewandte Chemie, 2015, 127, 11230-11235]	3.6	50	
333	Photoelectron imaging and spectroscopy of MI(2)(-) (M = Cs, Cu, Au): evolution from ionic to covalent bonding. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 11244-51	2.8	50	
332	Remarkable dinitrogen activation and cleavage by the Gd dimer: from dinitrogen complexes to ring and cage nitrides. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 2911-4	16.4	50	
331	Photoelectron Spectroscopy of Free Polyoxoanions Mo6O192- and W6O192- in the Gas Phase. Journal of Physical Chemistry A, 2004 , 108, 10089-10093	2.8	50	
330	Pentavalent Lanthanide Compounds: Formation and Characterization of Praseodymium(V) Oxides. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 6896-900	16.4	50	
329	Infrared spectra and electronic structures of agostic uranium methylidene molecules. <i>Inorganic Chemistry</i> , 2008 , 47, 1435-42	5.1	49	
328	Chemisorption-induced Structural Changes and Transition from Chemisorption to Physisorption in Au6(CO)n[(n = 49). <i>Journal of Physical Chemistry C</i> , 2008 , 112, 11920-11928	3.8	49	
327	Experimental Observation and Confirmation of Icosahedral W@Au12 and Mo@Au12 Molecules. Angewandte Chemie, 2002, 114, 4980-4983	3.6	49	

326	Dual Metal Active Sites in an Ir /FeO Single-Atom Catalyst: A Redox Mechanism for the Water-Gas Shift Reaction. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 12868-12875	16.4	49
325	A diuranium carbide cluster stabilized inside a C fullerene cage. <i>Nature Communications</i> , 2018 , 9, 2753	17.4	47
324	The electronic structure and chemical bonding in gold dihydride: AuH2land AuH2. <i>Chemical Science</i> , 2012 , 3, 3286	9.4	47
323	PrB : A Praseodymium-Doped Boron Cluster with a Pr Center Coordinated by a Doubly Aromatic Planar 🛮-B Ligand. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 6916-6920	16.4	46
322	Probing the electronic structure and chemical bonding in tricoordinate uranyl complexes UO2X3- (X = F, Cl, Br, I): competition between Coulomb repulsion and U-X bonding. <i>Inorganic Chemistry</i> , 2013 , 52, 6617-26	5.1	46
321	On the noble-gas-induced intersystem crossing for the CUO molecule: experimental and theoretical investigations of CUO(Ng)n (Ng = Ar, Kr, Xe; n = 1, 2, 3, 4) complexes in solid neon. <i>Inorganic Chemistry</i> , 2004 , 43, 882-94	5.1	46
320	Vibrationally resolved photoelectron spectroscopy of di-gold carbonyl clusters Au2(CO)n- (n = 1-3): experiment and theory. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 1247-54	2.8	45
319	Reactions of laser-ablated uranium atoms with H2O in excess argon: a matrix infrared and relativistic DFT investigation of uranium oxyhydrides. <i>Inorganic Chemistry</i> , 2005 , 44, 2159-68	5.1	45
318	Reactions of Th Atoms with CO: The First Thorium Carbonyl Complex and an Unprecedented Bent Triplet Insertion Product. <i>Journal of the American Chemical Society</i> , 1999 , 121, 12188-12189	16.4	45
317	Atomic Energies from a Convolutional Neural Network. <i>Journal of Chemical Theory and Computation</i> , 2018 , 14, 3933-3942	6.4	45
316	Copper nanocrystal plane effect on stereoselectivity of catalytic deoxygenation of aromatic epoxides. <i>Journal of the American Chemical Society</i> , 2015 , 137, 3791-4	16.4	44
315	Probing the nature of gold-carbon bonding in gold-alkynyl complexes. <i>Nature Communications</i> , 2013 , 4, 2223	17.4	44
314	Surface-specific interaction by structure-match confined pure high-energy facet of unstable TiO(B) polymorph. <i>Scientific Reports</i> , 2013 , 3, 1411	4.9	44
313	Implanting Mo Atoms into Surface Lattice of Pt3Mn Alloys Enclosed by High-Indexed Facets: Promoting Highly Active Sites for Ethylene Glycol Oxidation. <i>ACS Catalysis</i> , 2019 , 9, 442-455	13.1	44
312	Structure Evolution and Associated Catalytic Properties of Pt-Sn Bimetallic Nanoparticles. <i>Chemistry - A European Journal</i> , 2015 , 21, 12034-41	4.8	43
311	The promotional role of water in heterogeneous catalysis: mechanism insights from computational modeling. <i>Wiley Interdisciplinary Reviews: Computational Molecular Science</i> , 2016 , 6, 679-693	7.9	43
310	[La([]-B)La] (= 7-9): a new class of inverse sandwich complexes. <i>Chemical Science</i> , 2019 , 10, 2534-2542	9.4	42
309	High-Valent Nickel Promoted by Atomically Embedded Copper for Efficient Water Oxidation. <i>ACS Catalysis</i> , 2020 , 10, 9725-9734	13.1	42

308	Structural Rearrangement of Au-Pd Nanoparticles under Reaction Conditions: An ab Initio Molecular Dynamics Study. <i>ACS Nano</i> , 2017 , 11, 1649-1658	16.7	41	
307	Single-Atom Aul N 3 Site for Acetylene Hydrochlorination Reaction. ACS Catalysis, 2020, 10, 1865-1870	13.1	41	
306	Observation and investigation of the uranyl tetrafluoride dianion (UO2F42Dand its solvation complexes with water and acetonitrile. <i>Chemical Science</i> , 2012 , 3, 1137	9.4	41	
305	On the maximum bond multiplicity of carbon: unusual C?U quadruple bonding in molecular CUO. <i>Chemical Science</i> , 2012 , 3, 2786	9.4	41	
304	Photoelectron spectroscopy and the electronic structure of the uranyl tetrachloride dianion: UO2C(4(2-). <i>Journal of Chemical Physics</i> , 2012 , 137, 064315	3.9	41	
303	Correlation of calculated excited-state energies and experimental quantum yields of luminescent Tb(III) 时iketonates. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 4527-30	2.8	41	
302	On the chemical bonding of gold in auro-boron oxide clusters AunBO- (n = 1-3). <i>Journal of Physical Chemistry A</i> , 2007 , 111, 1648-58	2.8	41	
301	Structural basis of ubiquitin modification by the Legionella effector SdeA. <i>Nature</i> , 2018 , 557, 674-678	50.4	41	
300	Theoretical Study of Syngas Hydrogenation to Methanol on the Polar Zn-Terminated ZnO(0001) Surface. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 15952-15961	3.8	40	
299	Electronic Structures, (d-p)Conjugation Effects, and Spectroscopic Properties of Polyoxometalates: M6O19 2[M=Cr, Mo, W). <i>Journal of Cluster Science</i> , 2002 , 13, 137-163	3	40	
298	Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. <i>Nature Nanotechnology</i> , 2021 ,	28.7	40	
297	Unraveling the Origin of Visible Light Capture by CoreBhell TiO2 Nanotubes. <i>Chemistry of Materials</i> , 2016 , 28, 4467-4475	9.6	39	
296	Understanding Heterolytic H2 Cleavage and Water-Assisted Hydrogen Spillover on Fe3O4(001)-Supported Single Palladium Atoms. <i>ACS Catalysis</i> , 2019 , 9, 7876-7887	13.1	39	
295	Probing the electronic structure and chemical bonding of the "staple" motifs of thiolate gold nanoparticles: Au(SCH3)2- and Au2(SCH3)3 <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 9323-9	3.6	39	
294	Chemical Bonding of Crystalline LnB (Ln = La-Lu) and Its Relationship with LnB Gas-Phase Complexes. <i>Inorganic Chemistry</i> , 2018 , 57, 12999-13008	5.1	39	
293	PdAg bimetallic electrocatalyst for highly selective reduction of CO2 with low COOH* formation energy and facile CO desorption. <i>Nano Research</i> , 2019 , 12, 2866-2871	10	38	
292	Combined Experimental and Theoretical Investigation on the Selectivities of Ag, Au, and Pt Catalysts for Hydrogenation of Crotonaldehyde. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 20918-2092	6 ^{3.8}	38	
291	Isomers and Conformers of H(NH2BH2)nH Oligomers: Understanding the Geometries and Electronic Structure of BoronNitrogenHydrogen Compounds as Potential Hydrogen Storage Materials. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 3294-3299	3.8	38	

290	Experimental and theoretical studies of the products of laser-ablated thorium atom reactions with H2O in excess argon. <i>Journal of the American Chemical Society</i> , 2002 , 124, 6723-33	16.4	38
289	An 18-electron system containing a superheavy element: theoretical studies of sg@au12. <i>Inorganic Chemistry</i> , 2015 , 54, 3695-701	5.1	37
288	On the Upper Limits of Oxidation States in Chemistry. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 3242-3245	16.4	37
287	A Durable Nickel Single-Atom Catalyst for Hydrogenation Reactions and Cellulose Valorization under Harsh Conditions. <i>Angewandte Chemie</i> , 2018 , 130, 7189-7193	3.6	37
286	Actinide-silicon multiradical bonding: infrared spectra and electronic structures of the Si(EX)AnF3 (An = Th, U; X = H, F) molecules. <i>Journal of the American Chemical Society</i> , 2014 , 136, 1427-37	16.4	37
285	Photocatalysis with visible-light-active uranyl complexes. <i>Science China Chemistry</i> , 2013 , 56, 1671-1681	7.9	37
284	The mixed cyanide halide Au(I) complexes, [XAuCN][[X = F, Cl, Br, and I): evolution from ionic to covalent bonding. <i>Chemical Science</i> , 2011 , 2, 2101	9.4	37
283	Chirality, agostic interactions, and pyramidality in actinide methylidene complexes. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 9045-9	16.4	37
282	Ground-State Reversal by Matrix Interaction: Electronic States and Vibrational Frequencies of CUO in Solid Argon and Neon. <i>Angewandte Chemie - International Edition</i> , 2000 , 39, 4565-4567	16.4	37
281	Preparation and Characterization of Uranium-Iron Triple-Bonded UFe(CO) and OUFe(CO) Complexes. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 6932-6936	16.4	36
280	Metal-Organic Frameworks (MOFs) of a Cubic Metal Cluster with Multicentered Mn(I)-Mn(I) Bonds. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 11681-5	16.4	36
279	Theoretical investigations on the formation and dehydrogenation reaction pathways of H(NH2BH2)(n)H (n = 1-4) oligomers: importance of dihydrogen interactions. <i>Inorganic Chemistry</i> , 2010 , 49, 7710-20	5.1	36
278	Theoretical investigations of geometry, electronic structure and stability of UO(6): octahedral uranium hexoxide and its isomers. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 8837-44	2.8	36
277	Theoretical Studies on the Synergetic Effects of Au P d Bimetallic Catalysts in the Selective Oxidation of Methanol. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 16072-16081	3.8	35
276	Self-Selective Catalyst Synthesis for CO2 Reduction. <i>Joule</i> , 2019 , 3, 1927-1936	27.8	35
275	Oxidation states, geometries, and electronic structures of plutonium tetroxide PuO4 isomers: is octavalent Pu viable?. <i>Inorganic Chemistry</i> , 2013 , 52, 14237-45	5.1	35
274	A Very Short Be-Be Distance but No Bond: Synthesis and Bonding Analysis of Ng-Be O -NgL(Ng, Ngl=Ne, Ar, Kr, Xe). <i>Chemistry - A European Journal</i> , 2017 , 23, 2035-2039	4.8	34
273	Planar substrate-binding site dictates the specificity of ECF-type nickel/cobalt transporters. <i>Cell Research</i> , 2014 , 24, 267-77	24.7	34

272	Aurophilic attractions between a closed-shell molecule and a gold cluster. <i>Faraday Discussions</i> , 2011 , 152, 169-78; discussion 203-25	3.6	34
271	Quantum chemical calculations on buckminsterfullerene and related structures. II. The electronic structure and spectra of some Cn and CnCa2+ cages. <i>International Journal of Quantum Chemistry</i> , 1991 , 39, 331-344	2.1	34
270	B26IThe smallest planar boron cluster with a hexagonal vacancy and a complicated potential landscape. <i>Chemical Physics Letters</i> , 2017 , 683, 336-341	2.5	33
269	Actinide (An = Th-Pu) dimetallocenes: promising candidates for metal-metal multiple bonds. <i>Dalton Transactions</i> , 2015 , 44, 17045-53	4.3	33
268	3D hierarchical heterostructure assembled by NiFe LDH/(NiFe)Sx on biomass-derived hollow carbon microtubes as bifunctional electrocatalysts for overall water splitting. <i>Electrochimica Acta</i> , 2020 , 348, 136339	6.7	33
267	The Key Role of Support Surface Hydrogenation in the CH4 to CH3OH Selective Oxidation by a ZrO2-Supported Single-Atom Catalyst. <i>ACS Catalysis</i> , 2019 , 9, 8903-8909	13.1	33
266	Syntheses, Structures, Bonding, and Optical Properties of Trinuclear Cluster Iodides: M3(B-I)2(Edppm)3I (M=Cu, Ag), dppm=bis(diphenylphosphino)methane). <i>Journal of Cluster Science</i> , 2002 , 13, 119-136	3	33
265	Molecular nitrogen promotes catalytic hydrodeoxygenation. <i>Nature Catalysis</i> , 2019 , 2, 1078-1087	36.5	33
264	Geometries, electronic structures, and excited states of UN2, NUO+, and UO 2+2: a combined CCSD(T), RAS/CASPT2 and TDDFT study. <i>Theoretical Chemistry Accounts</i> , 2011 , 129, 467-481	1.9	32
263	A combined theoretical and experimental study of the reaction products of laser-ablated thorium atoms with CO: first identification of the CThO, CThO(-), OthCCO, OTh(eta(3)-CCO), and Th(CO)(n) (n = 1-6) molecules. <i>Inorganic Chemistry</i> , 2001 , 40, 5448-60	5.1	32
262	Single Iridium Atom Doped NiP Catalyst for Optimal Oxygen Evolution. <i>Journal of the American Chemical Society</i> , 2021 , 143, 13605-13615	16.4	32
261	Relativistic Effects Break Periodicity in Group 6 Diatomic Molecules. <i>Journal of the American Chemical Society</i> , 2016 , 138, 1126-9	16.4	31
260	Ag2S decorated nanocubes with enhanced near-infrared photothermal and photodynamic properties for rapid sterilization. <i>Colloids and Interface Science Communications</i> , 2019 , 33, 100201	5.4	31
259	Experimental and theoretical studies on the fragmentation of gas-phase uranyl-, neptunyl-, and plutonyl-diglycolamide complexes. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 10544-50	2.8	31
258	A tetrapositive metal ion in the gas phase: thorium(IV) coordinated by neutral tridentate ligands. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 6885-8	16.4	30
257	Reactions of cerium atoms and dicerium molecules with CO: formation of cerium carbonyls and photoconversion to CO-activated insertion molecules. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 1020	5-778	30
256	On the Highest Oxidation States of Metal Elements in MO4 Molecules (M = Fe, Ru, Os, Hs, Sm, and Pu). <i>Inorganic Chemistry</i> , 2016 , 55, 4616-25	5.1	30
255	Pentavalent lanthanide nitride-oxides: NPrO and NPrO complexes with N?Pr triple bonds. <i>Chemical Science</i> , 2017 , 8, 4035-4043	9.4	29

254	Photoelectron spectroscopy and theoretical studies of gaseous uranium hexachlorides in different oxidation states: UCl6 (q-) ($q = 0-2$). <i>Journal of Chemical Physics</i> , 2015 , 142, 134308	3.9	29
253	A Supramolecular Radical Dimer: High-Efficiency NIR-II Photothermal Conversion and Therapy. <i>Angewandte Chemie</i> , 2019 , 131, 15672-15677	3.6	29
252	Size-dependent surface activity of rutile and anatase TiO2 nanocrystals: facile surface modification and enhanced photocatalytic performance. <i>Chemistry - A European Journal</i> , 2012 , 18, 4759-65	4.8	29
251	Diversity of Functionalized Germanium Zintl Clusters: Syntheses and Theoretical Studies of [Ge9PdPPh3]3[and [Ni@(Ge9PdPPh3)]2[] <i>Journal of Cluster Science</i> , 2009 , 20, 601-609	3	29
250	Endohedral Stannaspherenes M@Sn12EA Rich Class of Stable Molecular Cage Clusters. Angewandte Chemie, 2007 , 119, 756-759	3.6	29
249	Planar B and B clusters with double-hexagonal vacancies. <i>Nanoscale</i> , 2019 , 11, 23286-23295	7.7	29
248	Hydrogenation of molecular oxygen to hydroperoxyl: An alternative pathway for O2 activation on nanogold catalysts. <i>Nano Research</i> , 2015 , 8, 3737-3748	10	28
247	[B30][IA Quasiplanar Chiral Boron Cluster. <i>Angewandte Chemie</i> , 2014 , 126, 5646-5651	3.6	28
246	Theoretical probing of deltahedral closo-auroboranes $B(x)Au(x)2-(x = 5-12)$. <i>Inorganic Chemistry</i> , 2006 , 45, 5269-71	5.1	28
245	On the mechanism of H2 activation over single-atom catalyst: An understanding of Pt1/WO in the hydrogenolysis reaction. <i>Chinese Journal of Catalysis</i> , 2020 , 41, 524-532	11.3	28
244	Interfacial synergy of ultralong jagged Pt85Mo15B nanowires with abundant active sites on enhanced hydrogen evolution in an alkaline solution. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 24328-24	4336	28
243	Theoretical Inspection of M1/PMA Single-Atom Electrocatalyst: Ultra-High Performance for Water Splitting (HER/OER) and Oxygen Reduction Reactions (OER). <i>ACS Catalysis</i> , 2021 , 11, 8929-8941	13.1	28
242	Giant Emission Enhancement of Solid-State Gold Nanoclusters by Surface Engineering. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 8270-8276	16.4	28
241	Heterogeneous Single-Cluster Catalysts for Selective Semihydrogenation of Acetylene with Graphdiyne-Supported Triatomic Clusters. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 10494-10500	3.8	27
240	Structural transition in metal-centered boron clusters: from tubular molecular rotors Ta@B and Ta@B to cage-like endohedral metalloborospherene Ta@B. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 27025-27030	3.6	27
239	Theoretical Studies of the Electronic Structure of Compounds of the Actinide Elements 2008 , 1893-201	2	27
238	TGMin: An efficient global minimum searching program for free and surface-supported clusters. Journal of Computational Chemistry, 2019 , 40, 1105-1112	3.5	27
237	Bonding trends across the series of tricarbonato-actinyl anions [(AnO)(CO)] (An = U-Cm): the plutonium turn. <i>Dalton Transactions</i> , 2017 , 46, 2542-2550	4.3	26

(2011-2017)

236	HittorfIs phosphorus: the missing link during transformation of red phosphorus to black phosphorus. <i>CrystEngComm</i> , 2017 , 19, 905-909	3.3	26	
235	An Ultrastable Matryoshka [Hf] Nanocluster as a Luminescent Sensor for Concentrated Alkali and Acid. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 16610-16616	16.4	26	
234	Quadruple bonding between iron and boron in the BFe(CO) complex. <i>Nature Communications</i> , 2019 , 10, 4713	17.4	26	
233	Matrix infrared spectroscopic and computational investigations of the lanthanide-methylene complexes CH2LnF2 with single Ln-C bonds. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 1913-21	2.8	26	
232	Chemisorption-Induced 2DBDDD Structural Transitions in Gold Heptamer: (CO)nAu7[[n = 14]). Journal of Physical Chemistry Letters, 2011 , 2, 2288-2293	6.4	26	
231	Raman under nitrogen. The high-resolution Raman spectroscopy of crystalline uranocene, thorocene, and ferrocene. <i>Journal of Chemical Physics</i> , 2004 , 120, 2708-18	3.9	26	
230	How Much Can Density Functional Approximations (DFA) Fail? The Extreme Case of the FeO4 Species. <i>Journal of Chemical Theory and Computation</i> , 2016 , 12, 1525-33	6.4	26	
229	Quasi-classical trajectory studies on the full-dimensional accurate potential energy surface for the OH + HO = HO + OH reaction. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 17718-17725	3.6	25	
228	LaB: an inverse triple-decker lanthanide boron cluster. <i>Chemical Communications</i> , 2019 , 55, 7864-7867	5.8	25	
227	Dynamic Frustrated Lewis Pairs on Ceria for Direct Nonoxidative Coupling of Methane. <i>ACS Catalysis</i> , 2019 , 9, 5523-5536	13.1	25	
226	A Ligand-Protected Golden Fullerene: The Dipyridylamido Au328+ Nanocluster. <i>Angewandte Chemie</i> , 2019 , 131, 5967-5970	3.6	25	
225	Theoretical study of the crystal plane effect and ion-pair active center for CH bond activation by Co3O4 nanocrystals. <i>Chinese Journal of Catalysis</i> , 2014 , 35, 462-467	11.3	25	
224	Rare-earth monocarbonyls MCO: comprehensive infrared observations and a transparent theoretical interpretation for $M = Sc; Y; Lallu.$ Chemical Science, 2012 , 3, 1548	9.4	25	
223	On the oxidation states of metal elements in MO3 - (M=V, Nb, Ta, Db, Pr, Gd, Pa) anions. <i>Science China Chemistry</i> , 2016 , 59, 442-451	7.9	25	
222	Structure regulation of noble-metal-based nanomaterials at an atomic level. <i>Nano Today</i> , 2019 , 26, 164	-1:7/59	24	
221	Infrared spectroscopy of neutral water clusters at finite temperature: Evidence for a noncyclic pentamer. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 15423-15428	11.5	24	
220	Electronic spectra and excited states of neptunyl and its [NpO2Cl4]2- complex. <i>Inorganic Chemistry</i> , 2012 , 51, 3231-8	5.1	24	
219	Theoretical Study of the Luminescent States and Electronic Spectra of UO2Cl2 in an Argon Matrix. Journal of Chemical Theory and Computation, 2011 , 7, 3293-303	6.4	24	

218	Spiers memorial lecture. The quantum chemistry of d- and f-element complexes: from an approximate existence to functional happiness. <i>Faraday Discussions</i> , 2003 , 124, 1-24; discussion 53-6, 453-5	3.6	24
217	Ab initio studies on the electronic structures of certain 10 Pelectron six-membered ring compounds. <i>Computational and Theoretical Chemistry</i> , 1993 , 280, 223-231		24
216	The Planar CoB18[Cluster as a Motif for Metallo-Borophenes. <i>Angewandte Chemie</i> , 2016 , 128, 7484-748	9 3.6	24
215	Re[] B and Re[] B: New Members of the Transition-Metal-Centered Borometallic Molecular Wheel Family. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 5317-5324	2.8	23
214	Structure and Bonding in [Sb@In Sb] and [Sb@In Sb]. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 8367-8371	16.4	23
213	Is Octavalent Pu(VIII) Possible? Mapping the Plutonium Oxyfluoride Series PuO(n)F(8-2n) (n = 0-4). <i>Inorganic Chemistry</i> , 2015 , 54, 8825-31	5.1	23
212	Strong electron correlation in UO2(-): a photoelectron spectroscopy and relativistic quantum chemistry study. <i>Journal of Chemical Physics</i> , 2014 , 140, 094306	3.9	23
211	Crown ether complexes of actinyls: a computational assessment of AnO(15-crown-5) (An = U, Np, Pu, Am, Cm). <i>Dalton Transactions</i> , 2017 , 46, 12354-12363	4.3	23
210	Electronic structures and d?plbonding of some M3X4+4 cluster compounds. <i>Polyhedron</i> , 1994 , 13, 1841	-1 <u>-1</u> 851	23
209	Lanthanides with Unusually Low Oxidation States in the PrB and PrB Boride Clusters. <i>Inorganic Chemistry</i> , 2019 , 58, 411-418	5.1	23
208	Norm-Conserving Pseudopotentials and Basis Sets To Explore Lanthanide Chemistry in Complex Environments. <i>Journal of Chemical Theory and Computation</i> , 2019 , 15, 5987-5997	6.4	22
207	Infrared Spectroscopy of Neutral Water Dimer Based on a Tunable Vacuum Ultraviolet Free Electron Laser. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 851-855	6.4	22
206	Probing the Electronic Structure and Chemical Bonding of Mono-Uranium Oxides with Different Oxidation States: $UOx(-)$ and UOx (x = 3-5). <i>Journal of Physical Chemistry A</i> , 2016 , 120, 1084-96	2.8	22
205	Noble-gas-induced disproportionation reactions: facile superoxo-to-peroxo conversion on chromium dioxide. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 8606-11	2.8	22
204	Experimental and theoretical investigations of IR spectra and electronic structures of the U(OH)2, UO2(OH), and UO2(OH)2 molecules. <i>Inorganic Chemistry</i> , 2006 , 45, 4157-66	5.1	22
203	Ab initio studies of electronic structures and quasi-aromaticity in M3S4 \blacksquare O4+n(M = Mo, W; n= 0 \blacksquare) clusters. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1994 , 90, 39-45		22
202	Non-noble metal single-atom catalysts with phosphotungstic acid (PTA) support: A theoretical study of ethylene epoxidation. <i>Science China Materials</i> , 2020 , 63, 1003-1014	7.1	21
201	High-loading and thermally stable Pt1/MgAl1.2Fe0.8O4 single-atom catalysts for high-temperature applications. <i>Science China Materials</i> , 2020 , 63, 949-958	7.1	21

(2021-2018)

200	Electronic Structure and Bonding Situation in MO (M = Be, Mg, Ca) Rhombic Clusters. <i>Journal of Physical Chemistry A</i> , 2018 , 122, 2816-2822	2.8	21
199	Free tetra- and hexa-coordinated platinum-cyanide dianions, and : A combined photodetachment photoelectron spectroscopic and theoretical study. <i>Chemical Physics</i> , 2006 , 329, 230-238	2.3	21
198	Bonding of multiple noble-gas atoms to CUO in solid neon: CUO(Ng)n (Ng=Ar, Kr, Xe; n=1, 2, 3, 4) complexes and the singlet-triplet crossover point. <i>Chemistry - A European Journal</i> , 2003 , 9, 4781-8	4.8	21
197	Chromium Single-Atom Catalyst with Graphyne Support: A Theoretical Study of NO Oxidation and Reduction. <i>ACS Catalysis</i> , 2020 , 10, 11951-11961	13.1	21
196	Symmetry Reduction upon Size Mismatch: The Non-Icosahedral Intermetalloid Cluster [Co@Ge12]3[]Chinese Journal of Chemistry, 2018 , 36, 1165-1168	4.9	21
195	On the gold-ligand covalency in linear [AuX2](-) complexes. <i>Dalton Transactions</i> , 2015 , 44, 5535-46	4.3	20
194	Spherical trihedral metallo-borospherenes. <i>Nature Communications</i> , 2020 , 11, 2766	17.4	20
193	Unravelling the Enigma of Nonoxidative Conversion of Methane on Iron Single-Atom Catalysts. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 18586-18590	16.4	20
192	Microemulsion-controlled synthesis of one-dimensional Ir nanowires and their catalytic activity in selective hydrogenation of o-chloronitrobenzene. <i>Langmuir</i> , 2015 , 31, 90-5	4	20
191	Adsorption-induced structural changes of gold cations from two- to three-dimensions. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 3038-43	3.6	20
190	Infrared and DFT investigations of the XC[triple bond]ReX3 and HC[triple bond]ReX3 complexes: Jahn-Teller distortion and the methylidyne C-X(H) stretching absorptions. <i>Inorganic Chemistry</i> , 2007 , 46, 8728-38	5.1	20
189	Rational design of an efficient descriptor for single-atom catalysts in the hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 9202-9208	13	20
188	Triple Bonds Between Iron and Heavier Group 15 Elements in AFe(CO) (A=As, Sb, Bi) Complexes. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 542-546	16.4	20
187	Periodic Trends in Actinyl Thio-Crown Ether Complexes. <i>Inorganic Chemistry</i> , 2018 , 57, 2899-2907	5.1	19
186	Characterization of Fe Substitution into La-Hexaaluminate Systems and the Effect on N2O Catalytic Decomposition. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 1999-2010	3.8	19
185	Out-of-plane dimeric MnIII quadridentate Schiff-base complexes: Synthesis, structure and magnetic properties. <i>Inorganica Chimica Acta</i> , 2009 , 362, 3563-3568	2.7	19
184	Chemistry on single atoms: spontaneous hydrogen production from reactions of transition-metal atoms with methanol at cryogenic temperatures. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 1302-5	16.4	19
183	Non-noble metal single-atom catalyst of Co1/MXene (Mo2CS2) for CO oxidation. <i>Science China Materials</i> , 2021 , 64, 651-663	7.1	19

182	An Isolable Diphosphene Radical Cation Stabilized by Three-Center Three-Electron Bonding with Chromium: End-On versus Side-On Coordination. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 9419-9424	16.4	19
181	Infrared multiphoton dissociation spectroscopy of a gas-phase complex of uranyl and 3-oxa-glutaramide: an extreme red-shift of the [O?U?O](2+) asymmetric stretch. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 3366-74	2.8	18
180	Periodicity, Electronic Structures, and Bonding of Gold Tetrahalides [AuX4]- (X = F, Cl, Br, I, At, Uus). <i>Inorganic Chemistry</i> , 2015 , 54, 11157-67	5.1	18
179	Excited States and Absorption Spectra of UF6: A RASPT2 Theoretical Study with Spin-Orbit Coupling. <i>Journal of Chemical Theory and Computation</i> , 2011 , 7, 3223-31	6.4	18
178	Photoelectron spectroscopy and theoretical studies of UF5(-) and UF6(-). <i>Journal of Chemical Physics</i> , 2012 , 136, 194304	3.9	18
177	M2 delta-to-oxalate pi* conjugation in oxalate-bridged complexes containing M-M quadruple bonds. <i>Chemical Communications</i> , 2001 , 2382-3	5.8	18
176	A general strategy for preparing pyrrolic-N type single-atom catalysts via pre-located isolated atoms. <i>Nature Communications</i> , 2021 , 12, 6806	17.4	18
175	Electronic structure and characterization of a uranyl di-15-crown-5 complex with an unprecedented sandwich structure. <i>Chemical Communications</i> , 2016 , 52, 12761-12764	5.8	18
174	Probing Ligand-Induced Cooperative Orbital Redistribution That Dominates Nanoscale Molecule-Surface Interactions with One-Unit-Thin TiO Nanosheets. <i>Nano Letters</i> , 2018 , 18, 7809-7815	11.5	18
173	Theoretical Studies on Hexanuclear Oxometalates [M6L19](q-) (M = Cr, Mo, W, Sg, Nd, U). Electronic Structures, Oxidation States, Aromaticity, and Stability. <i>Inorganic Chemistry</i> , 2015 , 54, 7171-80	5.1	17
172	Theoretical studies on the photoelectron and absorption spectra of MnO4(-) and TcO4(-). <i>Inorganic Chemistry</i> , 2013 , 52, 9867-74	5.1	17
171	Theoretical studies of structure and dynamics of molten salts: the LiF-ThF4 system. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 13954-62	3.4	17
170	Theoretical study on the leaching of palladium in a CO atmosphere. <i>Catalysis Science and Technology</i> , 2012 , 2, 2238	5.5	17
169	Formation and characterization of the XeOO(+) cation in solid argon. <i>Journal of the American Chemical Society</i> , 2006 , 128, 2504-5	16.4	17
168	Electronic structures and properties of eight-coordinate metal-polyarsenic complexes MAs8n- (M = V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re). <i>Inorganic Chemistry</i> , 2000 , 39, 1538-44	5.1	17
167	Understanding the Uniqueness of 2p Elements in Periodic Tables. <i>Chemistry - A European Journal</i> , 2020 , 26, 15558-15564	4.8	17
166	Unravelling a general mechanism of converting ionic B/N complexes into neutral B/N analogues of alkanes: HH dihydrogen bonding assisted dehydrogenation. <i>Chemical Communications</i> , 2019 , 55, 12239-	-1 ⁵²⁸ 242	16
165	Experimental and Theoretical Investigation of the Electronic and Geometrical Structures of the Au32 Cluster. <i>Angewandte Chemie</i> , 2005 , 117, 7281-7285	3.6	16

(2013-1999)

164	Bis(arene) Actinide Sandwich Complexes, (Ib-C6H3R3)2An: Linear or Bent?. <i>Journal of the American Chemical Society</i> , 1999 , 121, 10243-10244	16.4	16	
163	A Supramolecularly Activated Radical Cation for Accelerated Catalytic Oxidation. <i>Angewandte Chemie</i> , 2016 , 128, 9079-9083	3.6	16	
162	Coordination Sphere of Lanthanide Aqua Ions Resolved with Ab Initio Molecular Dynamics and X-ray Absorption Spectroscopy. <i>Inorganic Chemistry</i> , 2021 , 60, 3117-3130	5.1	16	
161	A supramolecular radical cation: folding-enhanced electrostatic effect for promoting radical-mediated oxidation. <i>Chemical Science</i> , 2018 , 9, 5015-5020	9.4	16	
160	Mechanistic Investigations on Thermal Hydrogenation of CO2 to Methanol by Nanostructured CeO2(100): The Crystal-Plane Effect on Catalytic Reactivity. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 11763-11771	3.8	15	
159	Efficient Nitrogen Fixation via a Redox-Flexible Single-Iron Site with Reverse-Dative Iron - B oron I Bonding. <i>Journal of Physical Chemistry A</i> , 2018 , 122, 4530-4537	2.8	15	
158	Insight into the elastic anisotropy and thermodynamics properties of Tantalum borides. <i>Vacuum</i> , 2019 , 169, 108883	3.7	15	
157	B30H8, B39H9(2-), B42H10, B48H10, and B72H12: polycyclic aromatic snub hydroboron clusters analogous to polycyclic aromatic hydrocarbons. <i>Journal of Molecular Modeling</i> , 2013 , 19, 1195-204	2	15	
156	Theoretical studies on the complexation of uranyl with typical carboxylate and amidoximate ligands. <i>Science China Chemistry</i> , 2013 , 56, 1525-1532	7.9	15	
155	Infrared spectroscopic study of hydrogen bonding topologies in the smallest ice cube. <i>Nature Communications</i> , 2020 , 11, 5449	17.4	15	
154	Underpotential-deposition synthesis and in-line electrochemical analysis of single-atom copper electrocatalysts. <i>Applied Catalysis B: Environmental</i> , 2021 , 289, 120028	21.8	15	
153	Theoretical Studies on Reactions of OH with H2SO4NH3 Complex and NH2 with H2SO4 in the Presence of Water. <i>ChemistrySelect</i> , 2016 , 1, 1421-1430	1.8	15	
152	Pd3 cluster catalysis: Compelling evidence from in operando spectroscopic, kinetic, and density functional theory studies. <i>Nano Research</i> , 2016 , 9, 2544-2550	10	15	
151	Bond-bending isomerism of Aul: competition between covalent bonding and aurophilicity. <i>Chemical Science</i> , 2016 , 7, 475-481	9.4	14	
150	Catalytic mechanism and bonding analyses of Au-Pd single atom alloy (SAA): CO oxidation reaction. <i>Science China Materials</i> , 2020 , 63, 993-1002	7.1	14	
149	Tracking the energy flow in the hydrogen exchange reaction OH + HO -dHO + OH. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 12543-12556	3.6	14	
148	Maximizing the Number of Interfacial Sites in Single-Atom Catalysts for the Highly Selective, Solvent-Free Oxidation of Primary Alcohols. <i>Angewandte Chemie</i> , 2018 , 130, 7921-7925	3.6	14	
147	Aspects of bonding in small gold clusters. <i>International Journal of Mass Spectrometry</i> , 2013 , 354-355, 15-18	1.9	14	

146	Significant Interactions between Uranium and Noble-Gas Atoms: Coordination of the UO2+ Cation by Ne, Ar, Kr, and Xe Atoms. <i>Angewandte Chemie</i> , 2004 , 116, 2608-2611	3.6	14
145	Noble gasIIranium coordination and intersystem crossing for the CUO(Ne)x(Ng)n (Ng = Ar, Kr, Xe) complexes in solid neon. <i>New Journal of Chemistry</i> , 2004 , 28, 289-294	3.6	14
144	Unveiling the In Situ Generation of a Monovalent Fe(I) Site in the Single-Fe-Atom Catalyst for Electrochemical CO2 Reduction. <i>ACS Catalysis</i> , 2021 , 11, 7292-7301	13.1	14
143	Catalytic ativities of single-atom catalysts for CO oxidation: Pt 1 /FeO x vs . Fe 1 /FeO x. <i>Chinese Journal of Catalysis</i> , 2017 , 38, 1566-1573	11.3	13
142	CeO(111) electronic reducibility tuned by ultra-small supported bimetallic Pt-Cu clusters. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 15286-15296	3.6	13
141	Triple bonds between iron and heavier group-14 elements in the AFe(CO) complexes (A = Ge, Sn, and Pb). <i>Chemical Communications</i> , 2019 , 55, 5685-5688	5.8	13
140	Quantifying the Bonding Strength of Gold-Chalcogen Bonds in Block Copolymer Systems. <i>Chemistry - an Asian Journal</i> , 2019 , 14, 1481-1486	4.5	13
139	High Uptake of ReO4[and CO2 Conversion by a Radiation-Resistant Thorium Nickle [Th48Ni6] Nanocage-Based Metal Organic Framework. <i>Angewandte Chemie</i> , 2019 , 131, 6083-6088	3.6	13
138	Probing the electronic structures of low oxidation-state uranium fluoride molecules UF(x)- ($x = 2-4$). Journal of Chemical Physics, 2013 , 139, 244303	3.9	13
137	Electronic Structure and Properties of Trihalogen Cations $X(3)(+)$ and $XY(2)(+)$ (X, Y = F, Cl, Br, I). <i>Inorganic Chemistry</i> , 1996 , 35, 100-109	5.1	13
136	N2 Reduction on Fe-Based Complexes with Different Supporting Main-Group Elements: Critical Roles of Anchor and Peripheral Ligands. <i>Small Methods</i> , 2019 , 3, 1800340	12.8	13
135	Dual Metal Active Sites in an Ir1/FeOx Single-Atom Catalyst: A Redox Mechanism for the Water-Gas Shift Reaction. <i>Angewandte Chemie</i> , 2020 , 132, 12968-12975	3.6	13
134	CoO-metalloxocubes: a new class of perovskite-like neutral clusters with cubic aromaticity. <i>National Science Review</i> , 2021 , 8, nwaa201	10.8	13
133	PrB7[]A Praseodymium-Doped Boron Cluster with a PrII Center Coordinated by a Doubly Aromatic Planar []7-B73[Ligand. <i>Angewandte Chemie</i> , 2017 , 129, 7020-7024	3.6	12
132	Atomically Dispersed Ruthenium Species Inside Metal Drganic Frameworks: Combining the High Activity of Atomic Sites and the Molecular Sieving Effect of MOFs. <i>Angewandte Chemie</i> , 2019 , 131, 4315	-4319	12
131	Cooperative Catalysis by Multiple Active Centers in Nonoxidative Conversion of Methane. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 13656-13663	3.8	12
130	Tuning the Electronic Properties and Performance of Low-Temperature CO Oxidation of the Gold Cluster by Oriented External Electronic Field. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 1093-1099	6.4	12
129	Destruction of the Uranyl Moiety in a U(V) "Cation-Cation" Interaction. <i>Inorganic Chemistry</i> , 2019 , 58, 10148-10159	5.1	12

128	Quadruple bonding of carbon in terminal carbides. Science China Chemistry, 2014, 57, 426-434	7.9	12
127	Theoretical and experimental studies of the interactions between Au2(-) and nucleobases. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 2928-35	3.6	12
126	A joint photoelectron spectroscopy and theoretical study on the electronic structure of UCl5- and UCl5. <i>Chemistry - an Asian Journal</i> , 2013 , 8, 2489-96	4.5	12
125	Selective hydrogenation of acetylene on graphene-supported non-noble metal single-atom catalysts. <i>Science China Materials</i> , 2020 , 63, 1741-1749	7.1	12
124	Insights into the electronic origin of enhancing the catalytic activity of Co3O4 for oxygen evolution by single atom ruthenium. <i>Nano Today</i> , 2020 , 34, 100955	17.9	12
123	Exploring the difference of bonding strength between silver(I) and chalcogenides in block copolymer systems. <i>Polymer Chemistry</i> , 2020 , 11, 7087-7093	4.9	12
122	Hydrogen evolution reaction catalyzed by nickel/nickel phosphide nanospheres synthesized through electrochemical methods. <i>Electrochimica Acta</i> , 2019 , 298, 229-236	6.7	12
121	Highly efficient ammonia synthesis at low temperature over a Ru-Co catalyst with dual atomically dispersed active centers. <i>Chemical Science</i> , 2021 , 12, 7125-7137	9.4	12
120	Mechanistic investigations of Co(II)-Catalyzed C-N coupling reactions. <i>Journal of Organometallic Chemistry</i> , 2018 , 868, 144-153	2.3	12
119	Development of novel highly stable synergistic quaternary photocatalyst for the efficient hydrogen evolution reaction. <i>Applied Surface Science</i> , 2020 , 510, 145498	6.7	11
118	Experimental and theoretical identification of the Fe(vii) oxidation state in FeO. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 31125-31131	3.6	11
117	A niobium-necked cluster [As3Nb(As3Sn3)](3-) with aromatic Sn3(2-) . Dalton Transactions, 2016, 45, 387	74-9	11
116	Theoretical studies of CO oxidation with lattice oxygen on Co3O4 surfaces. <i>Chinese Journal of Catalysis</i> , 2016 , 37, 193-198	11.3	11
115	Remarkable Dinitrogen Activation and Cleavage by the Gd Dimer: From Dinitrogen Complexes to Ring and Cage Nitrides. <i>Angewandte Chemie</i> , 2007 , 119, 2969-2972	3.6	11
114	Theoretical studies of (d-p)[bonding, electronic spectra, and reactivities in homo- and heterometallic clusters: [Mo3- n W n X4(H2O)9]4+ (X = O, S, Se, Te;n= 0-3). <i>Journal of Cluster Science</i> , 1996 , 7, 469-500	3	11
113	Impact of a Single Hydrogen Substitution by Fluorine on the Molecular Interaction and Miscibility between Sorafenib and Polymers. <i>Molecular Pharmaceutics</i> , 2019 , 16, 318-326	5.6	11
112	Exceptional Antisintering Gold Nanocatalyst for Diesel Exhaust Oxidation. <i>Nano Letters</i> , 2018 , 18, 6489	-6493	11
111	Rod-Shaped Silver Supercluster Unveiling Strong Electron Coupling between Substituent Icosahedral Units. <i>Journal of the American Chemical Society</i> , 2021 , 143, 12261-12267	16.4	11

110	Tandem catalyzing the hydrodeoxygenation of 5-hydroxymethylfurfural over a NiFe intermetallic supported Pt single-atom site catalyst. <i>Chemical Science</i> , 2021 , 12, 4139-4146	9.4	11
109	Investigation of water adsorption and dissociation on Au1/CeO2 single-atom catalysts using density functional theory. <i>Chinese Journal of Catalysis</i> , 2017 , 38, 1558-1565	11.3	10
108	A Single-Atom Manipulation Approach for Synthesis of Atomically Mixed Nanoalloys as Efficient Catalysts. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 13568-13574	16.4	10
107	Relativity-Induced Bonding Pattern Change in Coinage Metal Dimers M (M = Cu, Ag, Au, Rg). <i>Inorganic Chemistry</i> , 2018 , 57, 5499-5506	5.1	10
106	Ber Oxidationszahl-Obergrenzen in der Chemie. <i>Angewandte Chemie</i> , 2018 , 130, 3297-3300	3.6	10
105	Theoretical studies of the global minima and polarizabilities of small lithium clusters. <i>Chemical Physics Letters</i> , 2016 , 644, 235-242	2.5	10
104	Fluorine substitution enabling pseudocapacitive intercalation of sodium ions in niobium oxyfluoride. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 20813-20823	13	10
103	NMR studies of daidzein and puerarin: active anti-oxidants in traditional Chinese medicine. <i>Journal of Molecular Modeling</i> , 2019 , 25, 202	2	10
102	Excited states and luminescent properties of UO2F2 and its solvated complexes in aqueous solution. <i>Inorganic Chemistry</i> , 2014 , 53, 7340-50	5.1	10
101	157 nm pellicles (thin films) for photolithography: mechanistic investigation of the VUV and UV-C photolysis of fluorocarbons. <i>Journal of the American Chemical Society</i> , 2005 , 127, 8320-7	16.4	10
100	Few-Atom Pt Ensembles Enable Efficient Catalytic Cyclohexane Dehydrogenation for Hydrogen Production <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	10
99	Recent Progress on the investigations of boron clusters and boron-based materials (I): borophene. <i>Scientia Sinica Chimica</i> , 2018 , 48, 98-107	1.6	10
98	Expanded Inverse-Sandwich Complexes of Lanthanum Borides: LaB and LaB. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 2622-2630	2.8	10
97	Physical origin of chemical periodicities in the system of elements. <i>Pure and Applied Chemistry</i> , 2019 , 91, 1969-1999	2.1	10
96	The df-d Dative Bonding in a Uranium-Cobalt Heterobimetallic Complex for Efficient Nitrogen Fixation. <i>Inorganic Chemistry</i> , 2019 , 58, 7433-7439	5.1	9
95	Infrared spectroscopic and theoretical study of the reactions of cerium atoms with methanol in solid argon. <i>Journal of Molecular Spectroscopy</i> , 2015 , 310, 50-56	1.3	9
94	2-Butene Tetraanion Bridged Dinuclear Samarium(III) Complexes via Sm(II)-Mediated Reduction of Electron-Rich Olefins. <i>Journal of the American Chemical Society</i> , 2020 , 142, 10705-10714	16.4	9
93	Formation and Characterization of a BeOBeC Multiple Radical Featuring a Quartet Carbyne Moiety. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 6923-6928	16.4	9

92	Formation and Characterization of a BeOBeC Multiple Radical Featuring a Quartet Carbyne Moiety. <i>Angewandte Chemie</i> , 2020 , 132, 6990-6995	3.6	9
91	Theoretical studies on copper-catalyzed arylation of nitrogen heterocycles from benzenediazonium acetate under ligand-free conditions. <i>Journal of Organometallic Chemistry</i> , 2018 , 864, 50-57	2.3	9
90	Spin-Orbit Splittings and Low-Lying Electronic States of AuSi and AuGe: Anion Photoelectron Spectroscopy and ab Initio Calculations. <i>Journal of Physical Chemistry A</i> , 2018 , 122, 3374-3382	2.8	9
89	A binding-block ion selective mechanism revealed by a Na/K selective channel. <i>Protein and Cell</i> , 2018 , 9, 629-639	7.2	9
88	An Isolable Diphosphene Radical Cation Stabilized by Three-Center Three-Electron Bonding with Chromium: End-On versus Side-On Coordination. <i>Angewandte Chemie</i> , 2018 , 130, 9563-9568	3.6	9
87	Metal © rganic Frameworks (MOFs) of a Cubic Metal Cluster with Multicentered MnI?MnI Bonds. <i>Angewandte Chemie</i> , 2015 , 127, 11847-11851	3.6	9
86	Chirality, Agostic Interactions, and Pyramidality in Actinide Methylidene Complexes. <i>Angewandte Chemie</i> , 2007 , 119, 9203-9207	3.6	9
85	Tuning radical interactions in trisradical tricationic complexes by varying host-cavity sizes. <i>Chemical Science</i> , 2020 , 11, 107-112	9.4	9
84	Multiple Bonding Between Group 3 Metals and Fe(CO). <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 2344-2348	16.4	9
83	Double EAromaticity in a Planar Zinc-Doped Gold Cluster: AuZn. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 4606-4613	2.8	9
82	Periodicity and Covalency of [MX2][[M = Cu, Ag, Au, Rg; X = H, Cl, CN) Complexes. <i>European Journal of Inorganic Chemistry</i> , 2016 , 2016, 1395-1404	2.3	9
81	Manipulating Stabilities and Catalytic Properties of Trinuclear Metal Clusters through Tuning the Chemical Bonding: H2 Adsorption and Activation. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 10992-1100	03 ^{.8}	8
80	Structure and Bonding in [Sb@In8Sb12]3land [Sb@In8Sb12]5llAngewandte Chemie, 2019 , 131, 8455-845	5 9 .6	8
79	Surface Modification Strategy for Promoting the Performance of Non-noble Metal Single-Atom Catalysts in Low-Temperature CO Oxidation. <i>ACS Applied Materials & Discourse (Note of Supplied Materials & Discourse)</i> 12, 19457-19	9466	8
78	Gas-assisted transformation of gold from fcc to the metastable 4H phase. <i>Nature Communications</i> , 2020 , 11, 552	17.4	8
77	Deduction of bond length changes of symmetric molecules from experimental vibrational progressions, including a topological mass factor. <i>Journal of Physical Chemistry A</i> , 2012 , 116, 12299-304	2.8	8
76	Understanding Periodic and Non-periodic Chemistry in Periodic Tables. <i>Frontiers in Chemistry</i> , 2020 , 8, 813	5	8
75	Preparation and Characterization of UraniumIron Triple-Bonded UFe(CO)3Iand OUFe(CO)3ICCOMPLEX COMPLEX	3.6	7

74	Recent Advances in Single-Atom Catalysis 2017 , 1-11		7
73	Giant Emission Enhancement of Solid-State Gold Nanoclusters by Surface Engineering. <i>Angewandte Chemie</i> , 2020 , 132, 8347-8353	3.6	7
72	NMR measurements and DFT studies of nuclear magnetic shielding in emodin and chuanxiongzine molecules. <i>Journal of Molecular Structure</i> , 2018 , 1166, 304-310	3.4	7
71	Infrared absorption-edges of molecular nonlinear optical crystals: an ab initio calculation. <i>Applied Physics A: Materials Science and Processing</i> , 2003 , 76, 427-431	2.6	7
70	Electronic coupling between molybdenum and tungsten quadruple bonds in molecular squares and extended chains linked by oxalate, acetylenedicarboxylate, and perfluoroterephthalate bridges. <i>Israel Journal of Chemistry</i> , 2001 , 41, 187-195	3.4	7
69	Pentavalent Lanthanide Compounds: Formation and Characterization of Praseodymium(V) Oxides. <i>Angewandte Chemie</i> , 2016 , 128, 7010-7014	3.6	7
68	Polarizable force field parameterization and theoretical simulations of ThCl -LiCl molten salts. Journal of Computational Chemistry, 2018 , 39, 2432-2438	3.5	7
67	Adsorption energy as a promising single-parameter descriptor for single atom catalysis in the oxygen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 6442-6450	13	7
66	A Single-Atom Manipulation Approach for Synthesis of Atomically Mixed Nanoalloys as Efficient Catalysts. <i>Angewandte Chemie</i> , 2020 , 132, 13670-13676	3.6	6
65	Unravelling the Enigma of Nonoxidative Conversion of Methane on Iron Single-Atom Catalysts. <i>Angewandte Chemie</i> , 2020 , 132, 18745-18749	3.6	6
64	Theoretical studies on the bonding and electron structures of a [Au3Sb6](3-) complex and its oligomers. <i>Dalton Transactions</i> , 2016 , 45, 11657-67	4.3	6
63	On two different objectives of the concepts of ionic radii. Chemistry - A European Journal, 2013, 19, 147	′5 <u>&</u> .&7	6
62	Triazine COF-supported single-atom catalyst (Pd1/trzn-COF) for CO oxidation. <i>Science China Materials</i> , 2021 , 64, 1939-1951	7.1	6
61	Distinct electronic structures and bonding interactions in inverse-sandwich samarium and ytterbium biphenyl complexes. <i>Chemical Science</i> , 2020 , 12, 227-238	9.4	6
60	Diversity of Chemical Bonding and Oxidation States in MS Molecules of Group 8 Elements. <i>Chemistry - A European Journal</i> , 2017 , 23, 10580-10589	4.8	5
59	Triple Bonds Between Iron and Heavier Group 15 Elements in AFe(CO)3[A=As, Sb, Bi) Complexes. <i>Angewandte Chemie</i> , 2018 , 130, 551-555	3.6	5
58	Uranyl/12-crown-4 Ether Complexes and Derivatives: Structural Characterization and Isomeric Differentiation. <i>Inorganic Chemistry</i> , 2018 , 57, 4125-4134	5.1	5
57	Advances in computational actinide chemistry in China. <i>Radiochimica Acta</i> , 2014 , 102, 13-25	1.9	5

(2006-2000)

56	Ground-State Reversal by Matrix Interaction: Electronic States and Vibrational Frequencies of CUO in Solid Argon and Neon. <i>Angewandte Chemie</i> , 2000 , 112, 4739-4741	3.6	5	
55	Quantum chemical studies on the bonding characteristics of some M3X4 transition-metal halogenide clusters. <i>Journal of Cluster Science</i> , 1994 , 5, 505-521	3	5	
54	Heterogeneous Two-Atom Single-Cluster Catalysts for the Nitrogen Electroreduction Reaction. Journal of Physical Chemistry C, 2021 , 125, 19821-19830	3.8	5	
53	Doping Ruthenium into Metal Matrix for Promoted pH-Universal Hydrogen Evolution <i>Advanced Science</i> , 2022 , e2200010	13.6	5	
52	Structural exploration of Au M (M = Si, Ge, Sn; = 9-12) clusters with a revised genetic algorithm <i>RSC Advances</i> , 2019 , 9, 7432-7439	3.7	4	
51	On the theoretical construction of Nb2N2-based superatoms by external field strategies. <i>Chemical Physics Letters</i> , 2020 , 754, 137709	2.5	4	
50	An Ultrastable Matryoshka [Hf13] Nanocluster as a Luminescent Sensor for Concentrated Alkali and Acid. <i>Angewandte Chemie</i> , 2019 , 131, 16763-16769	3.6	4	
49	Theoretical Studies of the Electronic Structure of Compounds of the Actinide Elements 2010 , 1893-201	12	4	
48	A polyoxometalate cluster-based single-atom catalyst for NH3 synthesis via an enzymatic mechanism. <i>Journal of Materials Chemistry A</i> ,	13	4	
47	Size sensitivity of supported Ru catalysts for ammonia synthesis: From nanoparticles to subnanometric clusters and atomic clusters. <i>CheM</i> , 2021 ,	16.2	4	
46	Wet carbonate-promoted radical arylation of vinyl pinacolboronates with diaryliodonium salts yields substituted olefins. <i>Communications Chemistry</i> , 2020 , 3,	6.3	4	
45	Formation and Characterization of BeFe(CO) Anion with Beryllium-Iron Bonding. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 9334-9338	16.4	4	
44	Norm-Conserving Pseudopotentials and Basis Sets to Explore Actinide Chemistry in Complex Environments. <i>Journal of Chemical Theory and Computation</i> , 2021 , 17, 3360-3371	6.4	4	
43	A combined photoelectron spectroscopy and relativistic ab initio studies of the electronic structures of UFO and UFO(-). <i>Journal of Chemical Physics</i> , 2016 , 144, 084309	3.9	4	
42	Excited-State Chemistry: Photocatalytic Methanol Oxidation by Uranyl@Zeolite through Oxygen-Centered Radicals. <i>Inorganic Chemistry</i> , 2020 , 59, 6287-6300	5.1	4	
41	In situ encapsulated subnanometric CoO clusters within silicalite-1 zeolite for efficient propane dehydrogenation. <i>AICHE Journal</i> ,e17451	3.6	4	
40	Probing the electronic structure of the CoB16Idrum complex: Unusual oxidation state of CoIII <i>Chinese Journal of Chemical Physics</i> , 2019 , 32, 241-247	0.9	3	
39	Experimental and Theoretical Characterization of Superoxide Complexes [W2O6(O2]] and [W3O9(O2]]: Models for the Interaction of O2 with Reduced W Sites on Tungsten Oxide Surfaces. Angewandte Chemie, 2006, 118, 673-676	3.6	3	

38	Au20: A Tetrahedral Cluster ChemInform, 2003, 34, no		3
37	Infrared spectroscopic signature of the structural diversity of the water heptamer. <i>Cell Reports Physical Science</i> , 2022 , 3, 100748	6.1	3
36	Monovalent lanthanide(I) in borozene complexes. <i>Nature Communications</i> , 2021 , 12, 6467	17.4	3
35	Theoretical Insights into Dual-Metal-Site Catalysts for the Nonoxidative Coupling of Methane. <i>ACS Catalysis</i> ,13149-13159	13.1	3
34	Orientational Alignment of Oxygen Vacancies: Electric-Field-Inducing Conductive Channels in TiO Film to Boost Photocatalytic Conversion of CO into CO. <i>Nano Letters</i> , 2021 , 21, 5060-5067	11.5	3
33	Using general computational chemistry strategy to unravel the reactivity of emerging pollutants: An example of sulfonamide chlorination. <i>Water Research</i> , 2021 , 202, 117391	12.5	3
32	Electronic structures of $[M3(B-X)(D-S2)3]4+(M=Mo, Ti)$ cluster compounds and the effects of the B-X cap to the self-assembly in cluster synthesis. <i>Computational and Theoretical Chemistry</i> , 1991 , 251, 165-171		2
31	Screening silica-confined single-atom catalysts for nonoxidative conversion of methane. <i>Journal of Chemical Physics</i> , 2021 , 154, 174706	3.9	2
30	Efficient GoldPalladium Nanoparticles Stabilized by Poly(amic acid) Salt: Synthesis and Application in Catalytic Oxidation of Amines to Imines. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2020 , 30, 1384-1392	3.2	2
29	Phosphorene Supported Single-Atom Catalysts for CO Oxidation: A Computational Study. <i>ChemPhysChem</i> , 2021 , 22, 378-385	3.2	2
28	Anchoring single platinum atoms onto nickel nanoparticles affords highly selective catalysts for lignin conversion. <i>Cell Reports Physical Science</i> , 2021 , 2, 100567	6.1	2
27	Potential Application of Klūi Ligands in Actinide Separations. <i>ACS Symposium Series</i> , 2006 , 201-218	0.4	1
26	Infrared Absorption Cut-Off of Molecular Nonlinear Optical Crystals: Theoretical Studies on Vibrational Spectra of MDNB, Urea and MNA Molecules. <i>Chinese Physics Letters</i> , 1999 , 16, 925-927	1.8	1
25	Localized Molecular Orbital Studies of Fullerenes: C60 and C70. <i>Fullerenes, Nanotubes, and Carbon Nanostructures</i> , 1994 , 2, 35-48		1
24	Ladder Oxygenation of Group VIII Metal Clusters and the Formation of Metalloxocubes MO <i>Journal of Physical Chemistry Letters</i> , 2022 , 733-739	6.4	1
23	AuB: an Au-borozene complex Chemical Communications, 2022,	5.8	1
22	Integrating Dissociative and Associative Routes for Efficient Ammonia Synthesis over a TiCN-Promoted Ru-Based Catalyst. <i>ACS Catalysis</i> ,2651-2660	13.1	1
21	Modification of Palladium Nanocrystals with Single Atom Platinum via an Electrochemical Self-Catalysis Strategy for Efficient Formic Acid Electrooxidation <i>ACS Applied Materials & Action Interfaces</i> , 2022 ,	9.5	1

20	Singly Dispersed Bimetallic Sites as Stable and Efficient Single-Cluster Catalysts for Activating N2 and CO2. <i>Journal of Physical Chemistry C</i> ,	3.8	1
19	A milestone in single-atom catalysis for direct formic acid fuel cell. <i>National Science Review</i> , 2020 , 7, 17	′62 0.8	1
18	Carbon Monoxide Gas Induced 4H-to- Phase Transformation of Gold As Revealed by Transmission Electron Microscopy. <i>Inorganic Chemistry</i> , 2020 , 59, 14415-14423	5.1	1
17	From "S" to "O": experimental and theoretical insights into the atmospheric degradation mechanism of dithiophosphinic acids <i>RSC Advances</i> , 2020 , 10, 40035-40042	3.7	1
16	Metal Oxo-Fluoride Molecules OMF (M = Mn and Fe; = 1-4) and OMnF: Matrix Infrared Spectra and Quantum Chemistry. <i>Inorganic Chemistry</i> , 2021 , 60, 7687-7696	5.1	1
15	Electronic Structure and Spectroscopic Properties of Group-7 Tri-Oxo-Halides MOX (M = Mn-Bh, X = F-Ts). <i>Inorganic Chemistry</i> , 2021 , 60, 9504-9515	5.1	1
14	Frontispiz: The Planar CoB18[Cluster as a Motif for Metallo-Borophenes. <i>Angewandte Chemie</i> , 2016 , 128,	3.6	1
13	Ground-State Reversal by Matrix Interaction: Electronic States and Vibrational Frequencies of CUO in Solid Argon and Neon This work was supported by the National Science Foundation (CHE 97-00116), the US Department of Energy (DE-FG02-86ER13519), and the Los Alamos National	16.4	1
12	Multiple Bonding Between Group 3 Metals and Fe(CO)3[]Angewandte Chemie, 2020, 132, 2364-2368	3.6	0
11	Revisiting the Intriguing Electronic Features of the BeOBeC Carbyne and Some Isomers: A Quantum-Chemical Assessment. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 17261-17265	16.4	О
10	Formation and Characterization of BeFe(CO)4[Anion with Beryllium[ron Bonding. <i>Angewandte Chemie</i> , 2021 , 133, 9420-9424	3.6	O
9	Diketopyrrolopyrrole-based supramolecular nano-leveler for the enhancement of conformal copper electrodeposition. <i>Applied Surface Science</i> , 2021 , 569, 150982	6.7	Ο
8	Leaching of palladium atoms from small cluster models during Heck reactions (An experimental and theoretical study. <i>Catalysis Communications</i> , 2022 , 165, 106441	3.2	0
7	Theoretical studies of MXene-supported single-atom catalysts: Os1/Ti2CS2 for low-temperature CO oxidation. <i>Science China Materials</i> , 2022 , 65, 1303-1312	7.1	Ο
6	Exploring Stability of Transition-Metal Single Atoms on Cu2O Surfaces. <i>Journal of Physical Chemistry C</i> , 2022 , 126, 8065-8078	3.8	0
5	Non-noble metal single-atom catalyst with MXene support: Fe1/Ti2CO2 for CO oxidation. <i>Chinese Journal of Catalysis</i> , 2022 , 43, 1830-1841	11.3	Ο
4	Revisiting the Intriguing Electronic Features of the BeOBeC Carbyne and Some Isomers: A Quantum-Chemical Assessment. <i>Angewandte Chemie</i> , 2020 , 132, 17414-17418	3.6	
3	A Tetrapositive Metal Ion in the Gas Phase: Thorium(IV) Coordinated by Neutral Tridentate Ligands. <i>Angewandte Chemie</i> , 2013 , 125, 7023-7026	3.6	

Understanding the Electronic Structure and Stability of BnXn0/2[(n = 4, 6; X = H, F, Cl, Br, I, At, Ts) Clusters Chinese Journal of Chemistry, 2021, 39, 1811-1818

4.9

Quantum chemical studies of the electronic structures of anti-tumor agents: AuIIIL+ (L\pi\text{porphine, tetraphenylporphyrin). Computational and Theoretical Chemistry, 2022, 1211, 113685

2