List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/644215/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. Journal of Biotechnology, 2006, 124, 670-689.	3.8	611
2	Cascade Reactions in Multicompartmentalized Polymersomes. Angewandte Chemie - International Edition, 2014, 53, 146-150.	13.8	463
3	Flavoenzymes: diverse catalysts with recurrent features. Trends in Biochemical Sciences, 2000, 25, 126-132.	7.5	446
4	Bacterial enzymes involved in lignin degradation. Journal of Biotechnology, 2016, 236, 110-119.	3.8	411
5	The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia. Critical Reviews in Oncology/Hematology, 2004, 50, 87-100.	4.4	308
6	Same Substrate, Many Reactions: Oxygen Activation in Flavoenzymes. Chemical Reviews, 2018, 118, 1742-1769.	47.7	306
7	Crystal structure of a Baeyer-Villiger monooxygenase. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13157-13162.	7.1	267
8	Enzymeâ€Catalyzed Oxidation of 5â€Hydroxymethylfurfural to Furanâ€2,5â€dicarboxylic Acid. Angewandte Chemie - International Edition, 2014, 53, 6515-6518.	13.8	259
9	Discovery of a thermostable Baeyer–Villiger monooxygenase by genome mining. Applied Microbiology and Biotechnology, 2005, 66, 393-400.	3.6	238
10	Monooxygenases as biocatalysts: Classification, mechanistic aspects and biotechnological applications. Journal of Biotechnology, 2010, 146, 9-24.	3.8	227
11	Decorating microbes: surface display of proteins on Escherichia coli. Trends in Biotechnology, 2011, 29, 79-86.	9.3	198
12	Identification of a Baeyer-Villiger monooxygenase sequence motif. FEBS Letters, 2002, 518, 43-47.	2.8	193
13	The enigmatic reaction of flavins with oxygen. Trends in Biochemical Sciences, 2012, 37, 373-380.	7.5	193
14	Recent Developments in the Application of Baeyer–Villiger Monooxygenases as Biocatalysts. ChemBioChem, 2010, 11, 2208-2231.	2.6	189
15	A robust and extracellular heme-containing peroxidase from Thermobifida fusca as prototype of a bacterial peroxidase superfamily. Applied Microbiology and Biotechnology, 2010, 86, 1419-1430.	3.6	168
16	DyP-type peroxidases: a promising and versatile class of enzymes. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 1-7.	3.0	166
17	Risk assessment studies on succinate dehydrogenase inhibitors, the new weapons in the battle to control Septoria leaf blotch in wheat. Molecular Plant Pathology, 2012, 13, 263-275.	4.2	162
18	Multiple pathways guide oxygen diffusion into flavoenzyme active sites. Proceedings of the National Academy of Sciences of the United States of America. 2009. 106. 10603-10608.	7.1	157

#	Article	IF	CITATIONS
19	A rapid quantitative activity assay shows that the <i>Vibrio cholerae</i> colonization factor GbpA is an active lytic polysaccharide monooxygenase. FEBS Letters, 2014, 588, 3435-3440.	2.8	155
20	Crystal structures and inhibitor binding in the octameric flavoenzyme vanillyl-alcohol oxidase: the shape of the active-site cavity controls substrate specificity. Structure, 1997, 5, 907-920.	3.3	154
21	What's in a covalent bond?. FEBS Journal, 2009, 276, 3405-3427.	4.7	151
22	Halohydrin Dehalogenases Are Structurally and Mechanistically Related to Short-Chain Dehydrogenases/Reductases. Journal of Bacteriology, 2001, 183, 5058-5066.	2.2	147
23	Baeyer–Villiger monooxygenases: recent advances and future challenges. Current Opinion in Chemical Biology, 2010, 14, 138-144.	6.1	146
24	The Prodrug Activator EtaA from Mycobacterium tuberculosis Is a Baeyer-Villiger Monooxygenase. Journal of Biological Chemistry, 2004, 279, 3354-3360.	3.4	143
25	A novel oxidoreductase family sharing a conserved FAD-binding domain. Trends in Biochemical Sciences, 1998, 23, 206-207.	7.5	141
26	Revealing the moonlighting role of NADP in the structure of a flavin-containing monooxygenase. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6572-6577.	7.1	134
27	Converting Phenylacetone Monooxygenase into Phenylcyclohexanone Monooxygenase by Rational Design: Towards Practical Baeyer-Villiger Monooxygenases. Advanced Synthesis and Catalysis, 2005, 347, 979-986.	4.3	132
28	4-Hydroxyacetophenone monooxygenase fromPseudomonas fluorescensACB. FEBS Journal, 2001, 268, 2547-2557.	0.2	131
29	Flavoprotein oxidases: classification and applications. Applied Microbiology and Biotechnology, 2013, 97, 5177-5188.	3.6	123
30	Selfâ€Sufficient Baeyer–Villiger Monooxygenases: Effective Coenzyme Regeneration for Biooxygenation by Fusion Engineering. Angewandte Chemie - International Edition, 2008, 47, 2275-2278.	13.8	122
31	Discovery and Characterization of a 5-Hydroxymethylfurfural Oxidase from Methylovorus sp. Strain MP688. Applied and Environmental Microbiology, 2014, 80, 1082-1090.	3.1	122
32	Reduction of Carbonâ^'Carbon Double Bonds Using Organocatalytically Generated Diimide. Journal of Organic Chemistry, 2008, 73, 9482-9485.	3.2	117
33	Crystal structures and atomic model of NADPH oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6764-6769.	7.1	117
34	Snapshots of Enzymatic Baeyer-Villiger Catalysis. Journal of Biological Chemistry, 2011, 286, 29284-29291.	3.4	116
35	A Highly Specific Mechanism of Histone H3-K4 Recognition by Histone Demethylase LSD1. Journal of Biological Chemistry, 2006, 281, 35289-35295.	3.4	115
36	Substrate Specificity and Enantioselectivity of 4-Hydroxyacetophenone Monooxygenase. Applied and Environmental Microbiology, 2003, 69, 419-426.	3.1	111

MARCO FRAAIJE

#	Article	IF	CITATIONS
37	Discovery of a Novel Styrene Monooxygenase Originating from the Metagenome. Applied and Environmental Microbiology, 2007, 73, 5832-5839.	3.1	111
38	Covalent Flavinylation Is Essential for Efficient Redox Catalysis in Vanillyl-alcohol Oxidase. Journal of Biological Chemistry, 1999, 274, 35514-35520.	3.4	108
39	Baeyer–Villiger Monooxygenases: Tunable Oxidative Biocatalysts. ACS Catalysis, 2019, 9, 11207-11241.	11.2	108
40	The growing VAO flavoprotein family. Archives of Biochemistry and Biophysics, 2008, 474, 292-301.	3.0	107
41	Recent Developments in Flavinâ€based Catalysis. ChemCatChem, 2013, 5, 403-415.	3.7	100
42	The taming of oxygen: biocatalytic oxyfunctionalisations. Chemical Communications, 2014, 50, 13180-13200.	4.1	99
43	Altering the Substrate Specificity and Enantioselectivity of Phenylacetone Monooxygenase by Structure-Inspired Enzyme Redesign. Advanced Synthesis and Catalysis, 2007, 349, 1361-1368.	4.3	97
44	Enzyme Fusions in Biocatalysis: Coupling Reactions by Pairing Enzymes. ChemBioChem, 2019, 20, 20-28.	2.6	97
45	Efficient Biooxidations Catalyzed by a New Generation of Selfâ€Sufficient Baeyer–Villiger Monooxygenases. ChemBioChem, 2009, 10, 2595-2598.	2.6	96
46	Characterization and Crystal Structure of a Robust Cyclohexanone Monooxygenase. Angewandte Chemie - International Edition, 2016, 55, 15852-15855.	13.8	92
47	Structure-Based Enzyme Tailoring of 5-Hydroxymethylfurfural Oxidase. ACS Catalysis, 2015, 5, 1833-1839.	11.2	91
48	Substrate Specificity of Flavin-Dependent Vanillyl-Alcohol Oxidase from Penicillium Simplicissimum. Evidence for the Production of 4-Hydroxycinnamyl Alcohols from 4-Allylphenols. FEBS Journal, 1995, 234, 271-277.	0.2	89
49	Oxidations catalyzed by phenylacetone monooxygenase from Thermobifida fusca. Tetrahedron: Asymmetry, 2005, 16, 3077-3083.	1.8	89
50	Kinetic Mechanism of Phenylacetone Monooxygenase fromThermobifida fuscaâ€. Biochemistry, 2008, 47, 4082-4093.	2.5	89
51	Occurrence and Biocatalytic Potential of Carbohydrate Oxidases. Advances in Applied Microbiology, 2006, 60, 17-54.	2.4	87
52	Identification of a Gatekeeper Residue That Prevents Dehydrogenases from Acting as Oxidases. Journal of Biological Chemistry, 2009, 284, 4392-4397.	3.4	83
53	Biocatalytic properties of Baeyer–Villiger monooxygenases in aqueous–organic media. Journal of Molecular Catalysis B: Enzymatic, 2006, 39, 91-97.	1.8	80
54	Catalytic Mechanism of the Oxidative Demethylation of 4-(Methoxymethyl)phenol by Vanillyl-Alcohol Oxidase. Journal of Biological Chemistry, 1997, 272, 18111-18116.	3.4	79

#	Article	IF	CITATIONS
55	4-Hydroxyacetophenone monooxygenase from Pseudomonas fluorescens ACB as an oxidative biocatalyst in the synthesis of optically active sulfoxides. Tetrahedron: Asymmetry, 2006, 17, 130-135.	1.8	78
56	Enzymatic Synthesis of Vanillin. Journal of Agricultural and Food Chemistry, 2001, 49, 2954-2958.	5.2	76
57	Inversion of stereospecificity of vanillyl-alcohol oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 9455-9460.	7.1	74
58	Structures of Michaelis and Product Complexes of Plant Cytokinin Dehydrogenase: Implications for Flavoenzyme Catalysis. Journal of Molecular Biology, 2004, 341, 1237-1249.	4.2	73
59	Discovery, Characterization, and Kinetic Analysis of an Alditol Oxidase from Streptomyces coelicolor*. Journal of Biological Chemistry, 2007, 282, 20283-20291.	3.4	72
60	Catalytic reaction of cytokinin dehydrogenase: preference for quinones as electron acceptors. Biochemical Journal, 2004, 380, 121-130.	3.7	70
61	Expanding the set of rhodococcal Baeyer–Villiger monooxygenases by high-throughput cloning, expression and substrate screening. Applied Microbiology and Biotechnology, 2012, 95, 1479-1489.	3.6	66
62	Identifying determinants of NADPH specificity in Baeyer-Villiger monooxygenases. FEBS Journal, 2004, 271, 2107-2116.	0.2	65
63	Structural Analysis of the Catalytic Mechanism and Stereoselectivity in <i>Streptomyces coelicolor</i> Alditol Oxidase [,] . Biochemistry, 2008, 47, 978-985.	2.5	65
64	Structural Analysis of Flavinylation in Vanillyl-Alcohol Oxidase. Journal of Biological Chemistry, 2000, 275, 38654-38658.	3.4	63
65	From waste to value – direct utilization of limonene from orange peel in a biocatalytic cascade reaction towards chiral carvolactone. Green Chemistry, 2017, 19, 367-371.	9.0	63
66	An overview of microbial indigo-forming enzymes. Applied Microbiology and Biotechnology, 2020, 104, 925-933.	3.6	63
67	Enzymatic Synthesis of Novel Chiral Sulfoxides Employing Baeyer–Villiger Monooxygenases. European Journal of Organic Chemistry, 2010, 2010, 6409-6416.	2.4	62
68	Blending Baeyer–Villiger monooxygenases: using a robust BVMO as a scaffold for creating chimeric enzymes with novel catalytic properties. Chemical Communications, 2012, 48, 3288.	4.1	61
69	Stabilization of cyclohexanone monooxygenase by a computationally designed disulfide bond spanning only one residue. FEBS Open Bio, 2014, 4, 168-174.	2.3	59
70	A fast, sensitive and easy colorimetric assay for chitinase and cellulase activity detection. Biotechnology for Biofuels, 2014, 7, 37.	6.2	59
71	Enzymatic kinetic resolution of racemic ketones catalyzed by Baeyer–Villiger monooxygenases. Tetrahedron: Asymmetry, 2007, 18, 1338-1344.	1.8	56
72	Synthesis of Chiral 3-Alkyl-3,4-dihydroisocoumarins by Dynamic Kinetic Resolutions Catalyzed by a Baeyerâ^'Villiger Monooxygenase. Journal of Organic Chemistry, 2010, 75, 2073-2076.	3.2	55

#	Article	IF	CITATIONS
73	Coupled reactions by coupled enzymes: alcohol to lactone cascade with alcohol dehydrogenase–cyclohexanone monooxygenase fusions. Applied Microbiology and Biotechnology, 2017, 101, 7557-7565.	3.6	55
74	Flavoenzyme-Catalyzed Oxygenations and Oxidations of Phenolic Compounds. Advanced Synthesis and Catalysis, 2002, 344, 1023-1035.	4.3	54
75	Discovery of a eugenol oxidase from Rhodococcus sp. strain RHA1. FEBS Journal, 2007, 274, 2311-2321.	4.7	54
76	Cofactor regeneration in polymersome nanoreactors: enzymatically catalysed Baeyer–Villiger reactions. Journal of Materials Chemistry, 2011, 21, 18923.	6.7	54
77	Polycyclic Ketone Monooxygenase from the Thermophilic Fungus <i>Thermothelomyces thermophila</i> : A Structurally Distinct Biocatalyst for Bulky Substrates. Journal of the American Chemical Society, 2017, 139, 627-630.	13.7	54
78	Ancestral-sequence reconstruction unveils the structural basis of function in mammalian FMOs. Nature Structural and Molecular Biology, 2020, 27, 14-24.	8.2	54
79	Elucidation of the 4-Hydroxyacetophenone Catabolic Pathway in Pseudomonas fluorescens ACB. Journal of Bacteriology, 2008, 190, 5190-5198.	2.2	53
80	Hydroquinone Dioxygenase from <i>Pseudomonas fluorescens</i> ACB: a Novel Member of the Family of Nonheme-Iron(II)-Dependent Dioxygenases. Journal of Bacteriology, 2008, 190, 5199-5209.	2.2	53
81	The role of double covalent flavin binding in chito-oligosaccharide oxidase from <i>Fusarium graminearum</i> . Biochemical Journal, 2008, 413, 175-183.	3.7	51
82	Exploring the biocatalytic scope of a bacterial flavin-containing monooxygenase. Organic and Biomolecular Chemistry, 2011, 9, 1337.	2.8	50
83	[Cp*Rh(bpy)(H2O)]2+ as a coenzyme substitute in enzymatic oxidations catalyzed by Baeyer–Villiger monooxygenases. Chemical Communications, 2005, , 3724.	4.1	48
84	Molecular Cloning, Sequencing, and Heterologous Expression of the vaoA Gene from Penicillium simplicissimum CBS 170.90 Encoding Vanillyl-Alcohol Oxidase. Journal of Biological Chemistry, 1998, 273, 7865-7872.	3.4	47
85	Expanding the biocatalytic toolbox of flavoprotein monooxygenases from Rhodococcus jostii RHA1. Journal of Molecular Catalysis B: Enzymatic, 2013, 88, 20-25.	1.8	47
86	Catalases as biocatalysts in technical applications: current state and perspectives. Applied Microbiology and Biotechnology, 2015, 99, 3351-3357.	3.6	46
87	Selective Baeyer–Villiger oxidation of racemic ketones in aqueous–organic media catalyzed by phenylacetone monooxygenase. Tetrahedron: Asymmetry, 2008, 19, 197-203.	1.8	45
88	Biocatalysed concurrent production of enantioenriched compounds through parallel interconnected kinetic asymmetric transformations. Organic and Biomolecular Chemistry, 2010, 8, 1431.	2.8	44
89	Effects of water miscible organic solvents on the activity and conformation of the baeyer–villiger monooxygenases from <i>Thermobifida fusca</i> and <i>Acinetobacter calcoaceticus</i> : A comparative study. Biotechnology and Bioengineering, 2011, 108, 491-499.	3.3	44
90	Exploring the Structural Basis of Substrate Preferences in Baeyer-Villiger Monooxygenases. Journal of Biological Chemistry, 2012, 287, 22626-22634.	3.4	44

#	Article	IF	CITATIONS
91	Overriding Traditional Electronic Effects in Biocatalytic Baeyer–Villiger Reactions by Directed Evolution. Journal of the American Chemical Society, 2018, 140, 10464-10472.	13.7	43
92	Creating a more robust 5-hydroxymethylfurfural oxidase by combining computational predictions with a novel effective library design. Biotechnology for Biofuels, 2018, 11, 56.	6.2	43
93	Enigmatic Gratuitous Induction of the Covalent Flavoprotein Vanillyl-Alcohol Oxidase in Penicillium simplicissimum. Applied and Environmental Microbiology, 1997, 63, 435-439.	3.1	43
94	Oxidoreductases Working Together: Concurrent Obtaining of Valuable Derivatives by Employing the PIKAT Method. ChemCatChem, 2010, 2, 946-949.	3.7	42
95	Joint Functions of Protein Residues and NADP(H) in Oxygen Activation by Flavin-containing Monooxygenase. Journal of Biological Chemistry, 2010, 285, 35021-35028.	3.4	42
96	Mapping the Substrate Binding Site of Phenylacetone Monooxygenase from Thermobifida fusca by Mutational Analysis. Applied and Environmental Microbiology, 2011, 77, 5730-5738.	3.1	42
97	Exploring the Biocatalytic Scope of Alditol Oxidase from <i>Streptomyces coelicolor</i> . Advanced Synthesis and Catalysis, 2009, 351, 1523-1530.	4.3	41
98	Finding the Switch: Turning a Baeyer–Villiger Monooxygenase into a NADPH Oxidase. Journal of the American Chemical Society, 2014, 136, 16966-16969.	13.7	41
99	Regio- and Stereospecific Conversion of 4-Alkylphenols by the Covalent Flavoprotein Vanillyl-Alcohol Oxidase. Journal of Bacteriology, 1998, 180, 5646-5651.	2.2	41
100	The VAO/PCMH flavoprotein family. Archives of Biochemistry and Biophysics, 2017, 632, 104-117.	3.0	40
101	Asp-170 Is Crucial for the Redox Properties of Vanillyl-alcohol Oxidase. Journal of Biological Chemistry, 2000, 275, 14799-14808.	3.4	37
102	Changing the substrate specificity of a chitooligosaccharide oxidase from <i>Fusarium graminearum</i> by modelâ€inspired siteâ€directed mutagenesis. FEBS Letters, 2007, 581, 4905-4909.	2.8	37
103	Discovery and characterization of a putrescine oxidase from Rhodococcus erythropolis NCIMB 11540. Applied Microbiology and Biotechnology, 2008, 78, 455-463.	3.6	36
104	Investigating the coenzyme specificity of phenylacetone monooxygenase from Thermobifida fusca. Applied Microbiology and Biotechnology, 2010, 88, 1135-1143.	3.6	36
105	Turning a riboflavin-binding protein into a self-sufficient monooxygenase by cofactor redesign. Chemical Communications, 2011, 47, 11050.	4.1	36
106	Covalent flavinylation of vanillylâ€alcohol oxidase is an autocatalytic process. FEBS Journal, 2008, 275, 5191-5200.	4.7	35
107	Enzymatic Baeyer–Villiger Oxidation of Benzoâ€Fused Ketones: Formation of Regiocomplementary Lactones. European Journal of Organic Chemistry, 2009, 2009, 2526-2532.	2.4	35
108	Extensive substrate profiling of cyclopentadecanone monooxygenase as Baeyer–Villiger biocatalyst reveals novel regiodivergent oxidations. Journal of Molecular Catalysis B: Enzymatic, 2011, 73, 9-16.	1.8	35

#	Article	IF	CITATIONS
109	Dynamic Kinetic Resolution of αâ€&ubstituted βâ€Ketoesters Catalyzed by Baeyer–Villiger Monooxygenases: Access to Enantiopure αâ€Hydroxy Esters. Angewandte Chemie - International Edition, 2011, 50, 8387-8390.	13.8	35
110	Extending the substrate scope of a Baeyer–Villiger monooxygenase by multiple-site mutagenesis. Applied Microbiology and Biotechnology, 2014, 98, 4009-4020.	3.6	35
111	Exploring the biocatalytic potential of a DyP-type peroxidase by profiling the substrate acceptance of Thermobifida fusca DyP peroxidase. Tetrahedron, 2016, 72, 7276-7281.	1.9	35
112	Enantioselective hydroxylation of 4-alkylphenols by vanillyl alcohol oxidase. , 1998, 59, 171-177.		34
113	Biooxidation of ketones with a cyclobutanone structural motif by recombinant whole-cells expressing 4-hydroxyacetophenone monooxygenase. Journal of Molecular Catalysis B: Enzymatic, 2005, 32, 135-140.	1.8	34
114	BVMO-catalysed dynamic kinetic resolution of racemic benzyl ketones in the presence of anion exchange resins. Organic and Biomolecular Chemistry, 2010, 8, 1121.	2.8	34
115	Typeâ€II Flavinâ€Containing Monooxygenases: A New Class of Biocatalysts that Harbors Baeyer–Villiger Monooxygenases with a Relaxed Coenzyme Specificity. ChemCatChem, 2014, 6, 1112-1117.	3.7	34
116	Enzymatic Synthesis of Enantiomerically Pure βâ€Amino Ketones, βâ€Amino Esters, and βâ€Amino Alcohols with Baeyer–Villiger Monooxygenases. Chemistry - A European Journal, 2010, 16, 9525-9535.	3.3	33
117	Structure of a robust bacterial protein cage and its application as a versatile biocatalytic platform through enzyme encapsulation. Biochemical and Biophysical Research Communications, 2020, 529, 548-553.	2.1	33
118	Approaching boiling point stability of an alcohol dehydrogenase through computationally-guided enzyme engineering. ELife, 2020, 9, .	6.0	33
119	Cloning, overexpression and biocatalytic exploration of a novel Baeyer-Villiger monooxygenase from Aspergillus fumigatus Af293. AMB Express, 2013, 3, 33.	3.0	32
120	Baeyer–Villiger Monooxygenase FMO5 as Entry Point in Drug Metabolism. ACS Chemical Biology, 2017, 12, 2379-2387.	3.4	32
121	Kinetic mechanism of vanillyl-alcohol oxidase with short-chain 4-alkylphenols. FEBS Journal, 1998, 253, 712-719.	0.2	31
122	Alkyl-dihydroxyacetonephosphate Synthase. Journal of Biological Chemistry, 2000, 275, 6276-6283.	3.4	31
123	Coenzyme Binding during Catalysis Is Beneficial for the Stability of 4-Hydroxyacetophenone Monooxygenase. Journal of Biological Chemistry, 2005, 280, 32115-32121.	3.4	31
124	Baeyer–Villiger monooxygenase-catalyzed kinetic resolution of racemic α-alkyl benzyl ketones: enzymatic synthesis of α-alkyl benzylketones and α-alkyl benzylesters. Tetrahedron: Asymmetry, 2009, 20, 1168-1173.	1.8	30
125	Manipulating the stereoselectivity of the thermostable Baeyer–Villiger monooxygenase TmCHMO by directed evolution. Organic and Biomolecular Chemistry, 2017, 15, 9824-9829.	2.8	30
126	Vanillyl-alcohol oxidase, a tasteful biocatalyst. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 185-188.	1.8	29

#	Article	IF	CITATIONS
127	Biocatalytic Properties and Structural Analysis of Eugenol Oxidase from <i>Rhodococcus jostii</i> RHA1: A Versatile Oxidative Biocatalyst. ChemBioChem, 2016, 17, 1359-1366.	2.6	29
128	Enantio- and regioselective <i>ene</i> -reductions using F ₄₂₀ H ₂ -dependent enzymes. Chemical Communications, 2018, 54, 11208-11211.	4.1	29
129	Characterization of a New DyP-Peroxidase from the Alkaliphilic Cellulomonad, Cellulomonas bogoriensis. Molecules, 2019, 24, 1208.	3.8	29
130	Production of Hydroxy Acids: Selective Double Oxidation of Diols by Flavoprotein Alcohol Oxidase. Angewandte Chemie - International Edition, 2020, 59, 4869-4872.	13.8	29
131	Discovery and characterization of an F420-dependent glucose-6-phosphate dehydrogenase (Rh-FGD1) from Rhodococcus jostii RHA1. Applied Microbiology and Biotechnology, 2017, 101, 2831-2842.	3.6	28
132	Nicotinamide Adenine Dinucleotideâ€Dependent Redoxâ€Neutral Convergent Cascade for Lactonizations with Type II Flavin ontaining Monooxygenase. Advanced Synthesis and Catalysis, 2017, 359, 2142-2148.	4.3	27
133	Discovery of a Xylooligosaccharide Oxidase from Myceliophthora thermophila C1. Journal of Biological Chemistry, 2016, 291, 23709-23718.	3.4	26
134	Characterization and Crystal Structure of a Robust Cyclohexanone Monooxygenase. Angewandte Chemie, 2016, 128, 16084-16087.	2.0	26
135	P450BM3 fused to phosphite dehydrogenase allows phosphite-driven selective oxidations. Applied Microbiology and Biotechnology, 2017, 101, 2319-2331.	3.6	26
136	Beyond active site residues: overall structural dynamics control catalysis in flavin-containing and heme-containing monooxygenases. Current Opinion in Structural Biology, 2019, 59, 29-37.	5.7	26
137	Kinetic and chemical analyses of the cytokinin dehydrogenase-catalysed reaction: correlations with the crystal structure. Biochemical Journal, 2006, 398, 113-124.	3.7	25
138	Export of functional Streptomyces coelicolor alditol oxidase to the periplasm or cell surface of Escherichia coli and its application in whole-cell biocatalysis. Applied Microbiology and Biotechnology, 2009, 83, 679-687.	3.6	25
139	Structure-Based Engineering of <i>Phanerochaete chrysosporium</i> Alcohol Oxidase for Enhanced Oxidative Power toward Glycerol. Biochemistry, 2018, 57, 6209-6218.	2.5	25
140	Stabilization of cyclohexanone monooxygenase by computational and experimental library design. Biotechnology and Bioengineering, 2019, 116, 2167-2177.	3.3	25
141	Selective Oxidations of Organoboron Compounds Catalyzed by Baeyer–Villiger Monooxygenases. Advanced Synthesis and Catalysis, 2011, 353, 2169-2173.	4.3	24
142	Discovery of Baeyer–Villiger monooxygenases from photosynthetic eukaryotes. Journal of Molecular Catalysis B: Enzymatic, 2013, 98, 145-154.	1.8	24
143	Engineering Cyclohexanone Monooxygenase for the Production of Methyl Propanoate. ACS Chemical Biology, 2017, 12, 291-299.	3.4	24
144	Creating Oxidase–Peroxidase Fusion Enzymes as a Toolbox for Cascade Reactions. ChemBioChem, 2017, 18, 2226-2230.	2.6	24

9

MARCO FRAAIJE

#	Article	IF	CITATIONS
145	Design of Artificial Alcohol Oxidases: Alcohol Dehydrogenase–NADPH Oxidase Fusions for Continuous Oxidations. ChemBioChem, 2019, 20, 51-56.	2.6	24
146	Polycyclic Ketone Monooxygenase (PockeMO): A Robust Biocatalyst for the Synthesis of Optically Active Sulfoxides. Catalysts, 2017, 7, 288.	3.5	22
147	Chemoenzymatic Synthesis of an Unnatural Deazaflavin Cofactor That Can Fuel F ₄₂₀ -Dependent Enzymes. ACS Catalysis, 2019, 9, 6435-6443.	11.2	22
148	The vast repertoire of carbohydrate oxidases: An overview. Biotechnology Advances, 2021, 51, 107634.	11.7	22
149	Chemoenzymatic approaches to obtain chiral-centered selenium compounds. Tetrahedron, 2012, 68, 10431-10436.	1.9	21
150	Characterization of a chitinase from the cellulolytic actinomycete Thermobifida fusca. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1253-1259.	2.3	21
151	What to sacrifice? Fusions of cofactor regenerating enzymes with Baeyer-Villiger monooxygenases and alcohol dehydrogenases for self-sufficient redox biocatalysis. Tetrahedron, 2019, 75, 1832-1839.	1.9	21
152	Positive Impact of Natural Deep Eutectic Solvents on the Biocatalytic Performance of 5-Hydroxymethyl-Furfural Oxidase. Catalysts, 2020, 10, 447.	3.5	21
153	Crystallization and preliminary x-ray analysis of the flavoenzyme vanillyl-alcohol oxidase fromPenicillium Simplicissimum. , 1997, 27, 601-603.		20
154	Exploiting the enantioselectivity of Baeyer-Villiger monooxygenases via boron oxidation. Tetrahedron: Asymmetry, 2012, 23, 703-708.	1.8	20
155	Hot or not? Discovery and characterization of a thermostable alditol oxidase from Acidothermus cellulolyticus 11B. Applied Microbiology and Biotechnology, 2012, 95, 389-403.	3.6	20
156	The Oxidation of Thiols by Flavoprotein Oxidases: a Biocatalytic Route to Reactive Thiocarbonyls. Angewandte Chemie - International Edition, 2014, 53, 13206-13209.	13.8	20
157	Not so monofunctional—a case of thermostable Thermobifida fusca catalase with peroxidase activity. Applied Microbiology and Biotechnology, 2015, 99, 2225-2232.	3.6	20
158	Covalent immobilization of a flavoprotein monooxygenase via its flavin cofactor. Enzyme and Microbial Technology, 2016, 82, 138-143.	3.2	20
159	The Biocatalytic Synthesis of Syringaresinol from 2,6-Dimethoxy-4-allylphenol in One-Pot Using a Tailored Oxidase/Peroxidase System. ACS Catalysis, 2018, 8, 5549-5552.	11.2	20
160	Convergent Cascade Catalyzed by Monooxygenase–Alcohol Dehydrogenase Fusion Applied in Organic Media. ChemBioChem, 2019, 20, 1653-1658.	2.6	20
161	Synthesis of methyl propanoate by Baeyer–Villiger monooxygenases. Chemical Communications, 2014, 50, 13034-13036.	4.1	19
162	Production of indigo through the use of a dual-function substrate and a bifunctional fusion enzyme. Enzyme and Microbial Technology, 2020, 142, 109692.	3.2	19

#	Article	IF	CITATIONS
163	Genome Mining of Oxidation Modules in <i>trans</i> â€Acyltransferase Polyketide Synthases Reveals a Culturable Source for Lobatamides. Angewandte Chemie - International Edition, 2020, 59, 7761-7765.	13.8	19
164	Direction of the reactivity of vanillyl-alcohol oxidase with 4-alkylphenols. FEBS Letters, 2000, 481, 109-112.	2.8	18
165	Discovery, redesign and applications of Baeyer-Villiger monooxygenases. , 2007, , 107-127.		18
166	Ionic liquids for enhancing the enantioselectivity of isolated BVMO-catalysed oxidations. Green Chemistry, 2010, 12, 2255.	9.0	18
167	Structure-Based Redesign of Cofactor Binding in Putrescine Oxidase. Biochemistry, 2011, 50, 4209-4217.	2.5	18
168	A Biocatalytic Oneâ€Pot Approach for the Preparation of Lignin Oligomers Using an Oxidase/Peroxidase Cascade Enzyme System. Advanced Synthesis and Catalysis, 2017, 359, 3354-3361.	4.3	18
169	Conversion of Furans by Baeyer-Villiger Monooxygenases. Catalysts, 2017, 7, 179.	3.5	18
170	Reconstructing the evolutionary history of F420-dependent dehydrogenases. Scientific Reports, 2018, 8, 17571.	3.3	18
171	Characterization of a thermostable flavin-containing monooxygenase from Nitrincola lacisaponensis (NiFMO). Applied Microbiology and Biotechnology, 2019, 103, 1755-1764.	3.6	18
172	Isolation and characterization of a thermostable F420:NADPH oxidoreductase from Thermobifida fusca. Journal of Biological Chemistry, 2017, 292, 10123-10130.	3.4	17
173	Creating Flavin Reductase Variants with Thermostable and Solventâ€Tolerant Properties by Rationalâ€Design Engineering. ChemBioChem, 2020, 21, 1481-1491.	2.6	17
174	Vanillyl alcohol oxidase. The Enzymes, 2020, 47, 87-116.	1.7	17
175	Identification of a novel oxygenase capable of regiospecific hydroxylation of d-limonene into (+)-trans-carveol. Tetrahedron, 2016, 72, 7263-7267.	1.9	16
176	Biocatalytic Enantioselective Oxidation of <i>Sec</i> â€Allylic Alcohols with Flavinâ€Dependent Oxidases. Advanced Synthesis and Catalysis, 2019, 361, 5264-5271.	4.3	16
177	Precursor of ether phospholipids is synthesized by a flavoenzyme through covalent catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18791-18796.	7.1	15
178	Applications of Flavoprotein Oxidases in Organic Synthesis: Novel Reactivities that Go Beyond Amine and Alcohol Oxidations. Current Organic Chemistry, 2012, 16, 2542-2550.	1.6	15
179	Kinetic Resolution of <i>sec</i> â€Thiols by Enantioselective Oxidation with Rationally Engineered 5â€(Hydroxymethyl)furfural Oxidase. Angewandte Chemie - International Edition, 2018, 57, 2864-2868.	13.8	15
180	Side-Chain Pruning Has Limited Impact on Substrate Preference in a Promiscuous Enzyme. ACS Catalysis, 2018, 8, 11648-11656.	11.2	15

#	Article	IF	CITATIONS
181	Mining the Genome of Streptomyces leeuwenhoekii: Two New Type I Baeyer–Villiger Monooxygenases From Atacama Desert. Frontiers in Microbiology, 2018, 9, 1609.	3.5	15
182	Structure-Based Redesign of a Self-Sufficient Flavin-Containing Monooxygenase towards Indigo Production. International Journal of Molecular Sciences, 2019, 20, 6148.	4.1	15
183	Multienzymatic Stereoselective Reduction of Tetrasubstituted Cyclic Enones to Halohydrins with Three Contiguous Stereogenic Centers. ACS Catalysis, 2020, 10, 13050-13057.	11.2	15
184	Subcellular localization of vanillyl-alcohol oxidase inPenicillium simplicissimum. FEBS Letters, 1998, 422, 65-68.	2.8	14
185	Expanding the substrate scope of chitooligosaccharide oxidase from <i>Fusarium graminearum</i> by structureâ€inspired mutagenesis. Biotechnology and Bioengineering, 2015, 112, 1074-1080.	3.3	14
186	Microbial Flavoprotein Monooxygenases as Mimics of Mammalian Flavin-Containing Monooxygenases for the Enantioselective Preparation of Drug Metabolites. Drug Metabolism and Disposition, 2016, 44, 1270-1276.	3.3	14
187	Two tyrosine residues, Tyr-108 and Tyr-503, are responsible for the deprotonation of phenolic substrates in vanillyl-alcohol oxidase. Journal of Biological Chemistry, 2017, 292, 14668-14679.	3.4	14
188	Exploring PTDH–P450BM3 Variants for the Synthesis of Drug Metabolites. ChemBioChem, 2018, 19, 326-337.	2.6	14
189	Expression and Characterization of a Dye-Decolorizing Peroxidase from Pseudomonas Fluorescens Pf0-1. Catalysts, 2019, 9, 463.	3.5	14
190	Mutational and structural analysis of an ancestral fungal dyeâ€decolorizing peroxidase. FEBS Journal, 2021, 288, 3602-3618.	4.7	13
191	Kinetic mechanism of putrescine oxidase from <i><scp>R</scp>hodococcusÂerythropolis</i> . FEBS Journal, 2014, 281, 4384-4393.	4.7	12
192	Exploring the Substrate Scope of Baeyer–Villiger Monooxygenases with Branched Lactones as Entry towards Polyesters. ChemBioChem, 2018, 19, 354-360.	2.6	12
193	The multipurpose family of flavoprotein oxidases. The Enzymes, 2020, 47, 63-86.	1.7	12
194	Ancestral reconstruction of mammalian FMO1 enables structural determination, revealing unique features that explain its catalytic properties. Journal of Biological Chemistry, 2021, 296, 100221.	3.4	12
195	Lyophilization conditions for the storage of monooxygenases. Journal of Biotechnology, 2015, 203, 41-44.	3.8	11
196	Experimental Protocols for Generating Focused Mutant Libraries and Screening for Thermostable Proteins. Methods in Enzymology, 2018, 608, 151-187.	1.0	11
197	Mechanistic and Crystallographic Studies of Azoreductase AzoA from <i>Bacillus wakoensis</i> A01. ACS Chemical Biology, 2020, 15, 504-512.	3.4	11
198	Beyond the Protein Matrix: Probing Cofactor Variants in a Baeyer–Villiger Oxygenation Reaction. ACS Catalysis, 2013, 3, 3058-3062.	11.2	10

#	Article	IF	CITATIONS
199	High overexpression of dye decolorizing peroxidase TfuDyP leads to the incorporation of heme precursor protoporphyrin IX. Journal of Molecular Catalysis B: Enzymatic, 2016, 134, 372-377.	1.8	10
200	Molecular Basis for Converting (2S)-Methylsuccinyl-CoA Dehydrogenase into an Oxidase. Molecules, 2018, 23, 68.	3.8	10
201	A Tailor-Made Deazaflavin-Mediated Recycling System for Artificial Nicotinamide Cofactor Biomimetics. ACS Catalysis, 2021, 11, 11561-11569.	11.2	10
202	Flavoprotein Kinetics. , 1999, 131, 61-86.		9
203	ADP Competes with FAD Binding in Putrescine Oxidase. Journal of Biological Chemistry, 2008, 283, 28259-28264.	3.4	9
204	A stepwise approach for the reproducible optimization of PAMO expression in Escherichia coli for whole-cell biocatalysis. BMC Biotechnology, 2012, 12, 31.	3.3	9
205	Turning a monocovalent flavoprotein into a bicovalent flavoprotein by structure-inspired mutagenesis. Bioorganic and Medicinal Chemistry, 2014, 22, 5621-5627.	3.0	9
206	Rational Engineering of a Flavoprotein Oxidase for Improved Direct Oxidation of Alcohols to Carboxylic Acids. Molecules, 2017, 22, 2205.	3.8	9
207	Editorial: Actinobacteria, a Source of Biocatalytic Tools. Frontiers in Microbiology, 2019, 10, 800.	3.5	9
208	Exploring the Biocatalytic Potential of a Selfâ€ S ufficient Cytochrome P450 from <i>Thermothelomyces thermophila</i> . Advanced Synthesis and Catalysis, 2019, 361, 2487-2496.	4.3	9
209	Systematic Assessment of Uncoupling in Flavoprotein Oxidases and Monooxygenases. ACS Sustainable Chemistry and Engineering, 2023, 11, 4948-4959.	6.7	9
210	Cyclization in concert. Nature Chemical Biology, 2008, 4, 719-721.	8.0	8
211	A Generic, Whole-Cell–Based Screening Method for Baeyer-Villiger Monooxygenases. Journal of Biomolecular Screening, 2013, 18, 678-687.	2.6	8
212	Analysis of the structure and substrate scope of chitooligosaccharide oxidase reveals high affinity for C2â€modified glucosamines. FEBS Letters, 2020, 594, 2819-2828.	2.8	8
213	Insights in the kinetic mechanism of the eukaryotic Baeyer–Villiger monooxygenase BVMOAf1 from Aspergillus fumigatus Af293. Biochimie, 2014, 107, 270-276.	2.6	7
214	Characterization of Two VAO-Type Flavoprotein Oxidases from Myceliophthora thermophila. Molecules, 2018, 23, 111.	3.8	7
215	Production of Hydroxy Acids: Selective Double Oxidation of Diols by Flavoprotein Alcohol Oxidase. Angewandte Chemie, 2020, 132, 4899-4902.	2.0	7
216	Facile Stereoselective Reduction of Prochiral Ketones by using an F ₄₂₀ â€dependent Alcohol Dehydrogenase. ChemBioChem, 2021, 22, 156-159.	2.6	7

#	Article	IF	CITATIONS
217	Resonance Raman view of the active site architecture in bacterial DyP-type peroxidases. RSC Advances, 2020, 10, 11095-11104.	3.6	6
218	Enantioselective oxidation of secondary alcohols by the flavoprotein alcohol oxidase from Phanerochaete chrysosporium. Archives of Biochemistry and Biophysics, 2021, 704, 108888.	3.0	6
219	On the diversity of <scp>F₄₂₀</scp> â€dependent oxidoreductases: A sequence―and structureâ€based classification. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1497-1507.	2.6	6
220	Whole-cell screening of oxidative enzymes using genetically encoded sensors. Chemical Science, 2021, 12, 14766-14772.	7.4	6
221	DyP-type Peroxidases: A Promising and Versatile Class of Enzymes. Enzyme Engineering, 2012, 01, .	0.3	5
222	Substrate binding tunes the reactivity of hispidin 3-hydroxylase, a flavoprotein monooxygenase involved in fungal bioluminescence. Journal of Biological Chemistry, 2020, 295, 16013-16022.	3.4	5
223	Unique Features of a New Baeyer–Villiger Monooxygenase from a Halophilic Archaeon. Catalysts, 2020, 10, 128.	3.5	5
224	Discovery, Biocatalytic Exploration and Structural Analysis of a 4â€Ethylphenol Oxidase from <i>Gulosibacter chungangensis</i> . ChemBioChem, 2021, 22, 3225-3233.	2.6	5
225	Functionalization of Oxidases with Peroxidase Activity Creates Oxiperoxidases: A New Breed of Hybrid Enzyme Capable of Cascade Chemistry. ChemBioChem, 2012, 13, 252-258.	2.6	4
226	High-level production of industrially relevant oxidases by a two-stage fed-batch approach: overcoming catabolite repression in arabinose-inducible Escherichia coli systems. Applied Microbiology and Biotechnology, 2020, 104, 5337-5345.	3.6	4
227	Flavin-tag: A Facile Method for Site-Specific Labeling of Proteins with a Flavin Fluorophore. Bioconjugate Chemistry, 2021, 32, 1559-1563.	3.6	4
228	Discovery of two novel oxidases using a highâ€ŧhroughput activity screen. ChemBioChem, 2021, , .	2.6	4
229	Broadening the Scope of the Flavinâ€Tag Method by Improving Flavin Incorporation and Incorporating Flavin Analogs. ChemBioChem, 2022, 23, .	2.6	4
230	Kinetic Resolution of <i>sec</i> â€Thiols by Enantioselective Oxidation with Rationally Engineered 5â€{Hydroxymethyl)furfural Oxidase. Angewandte Chemie, 2018, 130, 2914-2918.	2.0	3
231	Optimizing the linker length for fusing an alcohol dehydrogenase with a cyclohexanone monooxygenase. Methods in Enzymology, 2021, 647, 107-143.	1.0	3
232	Modular Assembly of Phosphite Dehydrogenase and Phenylacetone Monooxygenase for Tuning Cofactor Regeneration. Biomolecules, 2021, 11, 905.	4.0	3
233	Kinetic and Structural Properties of a Robust Bacterial L-Amino Acid Oxidase. Catalysts, 2021, 11, 1309.	3.5	3
234	Introducing an Artificial Deazaflavin Cofactor in <i>Escherichia coli</i> and <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2022, 11, 938-952.	3.8	3

#	Article	IF	CITATIONS
235	SERR Spectroelectrochemistry as a Guide for Rational Design of DyP-Based Bioelectronics Devices. International Journal of Molecular Sciences, 2021, 22, 7998.	4.1	2
236	Expanding the Repertoire of Flavoenzyme-Based Biocatalysis. , 2017, , 119-133.		1
237	Kinetic resolution of racemic benzofused alcohols catalysed by HMFO variants in presence of natural deep eutectic solvents. Biocatalysis and Biotransformation, 2023, 41, 145-152.	2.0	1
238	Chemoenzymatic Synthesis of the Most Pleasant Stereoisomer of Jessemal. Journal of Organic Chemistry, 2022, , .	3.2	1
239	Special issue OxiZymes 2016. Journal of Molecular Catalysis B: Enzymatic, 2016, 134, 273.	1.8	0
240	Genome Mining of Oxidation Modules in trans â€Acyltransferase Polyketide Synthases Reveals a Culturable Source for Lobatamides. Angewandte Chemie, 2020, 132, 7835-7839.	2.0	0
241	Selective oxidations of organoboron compounds catalyzed by Baeyer-Villiger monooxygenases. , 0, , .		0