Wei Xiong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6441992/publications.pdf Version: 2024-02-01

WELXIONC

#	Article	IF	CITATIONS
1	Plasmonic core–shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement. Nanoscale, 2015, 7, 2862-2868.	5.6	153
2	Giant Plasmene Nanosheets, Nanoribbons, and Origami. ACS Nano, 2014, 8, 11086-11093.	14.6	134
3	Ultralow-density copper nanowire aerogel monoliths with tunable mechanical and electrical properties. Journal of Materials Chemistry A, 2013, 1, 6723.	10.3	132
4	Atomically Dispersed Iron Metal Site in a Porphyrin-Based Metal–Organic Framework for Photocatalytic Nitrogen Fixation. ACS Nano, 2021, 15, 9670-9678.	14.6	127
5	One-step synthesis of flower-like Ag/AgCl/BiOCl composite with enhanced visible-light photocatalytic activity. Catalysis Communications, 2011, 16, 229-233.	3.3	116
6	CuSn Alloy Nanoparticles on Nitrogenâ€Doped Graphene for Electrocatalytic CO ₂ Reduction. ChemElectroChem, 2019, 6, 5951-5957.	3.4	59
7	Plasmonic caged gold nanorods for near-infrared light controlled drug delivery. Nanoscale, 2014, 6, 14388-14393.	5.6	49
8	Single-crystal caged gold nanorods with tunable broadband plasmon resonances. Chemical Communications, 2013, 49, 9630.	4.1	43
9	Large-Scale Self-Assembly and Stretch-Induced Plasmonic Properties of Core–Shell Metal Nanoparticle Superlattice Sheets. Journal of Physical Chemistry C, 2014, 118, 26816-26824.	3.1	42
10	Multilayered core–satellite nanoassemblies with fine-tunable broadband plasmon resonances. Nanoscale, 2015, 7, 3445-3452.	5.6	42
11	A new type bimetallic NiMn-MOF-74 as an efficient low-temperatures catalyst for selective catalytic reduction of NO by CO. Chemical Engineering and Processing: Process Intensification, 2021, 159, 108232.	3.6	32
12	Matryoshka-caged gold nanorods: Synthesis, plasmonic properties, and catalytic activity. Nano Research, 2016, 9, 415-423.	10.4	31
13	Hollow porous zinc cobaltate nanocubes photocatalyst derived from bimetallic zeolitic imidazolate frameworks towards enhanced gaseous toluene degradation. Journal of Colloid and Interface Science, 2018, 516, 76-85.	9.4	28
14	Multifunctional Plasmonic Co-Doped Fe ₂ O ₃ @polydopamine-Au for Adsorption, Photocatalysis, and SERS-based Sensing. Particle and Particle Systems Characterization, 2016, 33, 602-609.	2.3	27
15	2D Porous graphitic C3N4 nanosheets/Ag3PO4 nanocomposites for enhanced visible-light photocatalytic degradation of 4-chlorophenol. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	25
16	Fabrication of MoS2@g-C3N4 core-shell nanospheres for visible light photocatalytic degradation of toluene. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	17
17	Facile design of highly effective Fe-modified bimetallic Fex–Ni1â"x-MOFs catalysts with rodlike structures for low-temperature NO reduction by CO. Journal of Materials Science, 2021, 56, 9914-9928.	3.7	17
18	Insight into the photocatalytic mineralization of short chain chlorinated paraffins boosted by polydopamine and Ag nanoparticles. Journal of Hazardous Materials, 2018, 359, 186-193.	12.4	15

Wei Xiong

#	Article	IF	CITATIONS
19	Insights into N-Coordinated Bimetallic Site Synergy during NO Selective Catalytic Reduction by CO. ACS Applied Materials & Interfaces, 2021, 13, 57182-57192.	8.0	15
20	Spectral properties of nanoengineered Ag/Au bilayer rods fabricated by electron beam lithography. Applied Optics, 2011, 50, 5600.	2.1	14
21	Synthesis of Bimetallic MOF-74-CoMn Catalyst and Its Application in Selective Catalytic Reduction of NO with CO. Acta Chimica Sinica, 2019, 77, 758.	1.4	12
22	<scp> CO ₂ </scp> electroreduction by <scp>AuCu</scp> bimetallic clusters: A first principles study. International Journal of Energy Research, 2021, 45, 18684-18694.	4.5	9
23	Synthesis of Bimetallic Ag-Ni-MOF-74 Catalyst with Excellent CO-SCR Performance in Low Temperature Range. Acta Chimica Sinica, 2021, 79, 361.	1.4	7
24	Construction of crystalline and amorphous interface between FeS2 and polyaniline for enhanced electrocatalytic activity. Applied Surface Science, 2020, 505, 144534.	6.1	6
25	Noble Metal–Based Nanosensors for Environmental Detection. , 2020, , 39-78.		4
26	Synthesis of Carbon Doped TiO ₂ Quantum Dots for Photocatalytic Sterilization under the Visible Light Irradiation and the Mechanisms. E3S Web of Conferences, 2019, 118, 01013.	0.5	3
27	Preparation and Characterization of Co-Modified Bimetallic MOF-74-NiCo as an Efficient Catalyst for Low Temperature CO-SCR. Integrated Ferroelectrics, 2022, 227, 221-230.	0.7	3
28	Nano-Gold Boosted Environmental Catalysis. , 2020, , 165-202.		1
29	Theoretical study of the influence of doped niobium on the electronic properties of CsPbBr3. Nanoscale Advances, 2021, 3, 1910-1916.	4.6	1