Jing-ze Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6441890/publications.pdf

Version: 2024-02-01

57758 102487 5,332 127 44 66 citations h-index g-index papers 127 127 127 6160 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	LixCu alloy nanowires nested in Ni foam for highly stable Li metal composite anode. Science China Materials, 2022, 65, 69-77.	6.3	13
2	LiF headspace affixed metallic Li composite enables Li accommodation on the anode surface with excellent electrochemical performance. Chemical Engineering Journal, 2022, 430, 132970.	12.7	11
3	Three-dimensional lithiophilic Li22Sn5 alloy skeleton for dendrite-free and ultrahigh-capacity Li metal anode. Electrochimica Acta, 2022, 405, 139787.	5.2	14
4	Simultaneously Constructing a TiO ₂ –LiF Composite Coating Enhancing the Cycling Stability of LiCoO ₂ at 4.6 V High Voltage. ACS Sustainable Chemistry and Engineering, 2022, 10, 8151-8161.	6.7	6
5	Li-Ca Alloy Composite Anode with Ant-Nest-Like Lithiophilic Channels in Carbon Cloth Enabling High-Performance Li Metal Batteries. Research, 2022, 2022, .	5.7	6
6	Hexacyanoferrateâ€Type Prussian Blue Analogs: Principles and Advances Toward Highâ€Performance Sodium and Potassium Ion Batteries. Advanced Energy Materials, 2021, 11, 2000943.	19.5	217
7	Ferrocene-based metal-organic framework as a promising cathode in lithium-ion battery. Chemical Engineering Journal, 2021, 404, 126463.	12.7	64
8	Fast Li ⁺ Transport of Liâ^'Zn Alloy Protective Layer Enabling Excellent Electrochemical Performance of Li Metal Anode. Batteries and Supercaps, 2021, 4, 140-145.	4.7	13
9	Influence of Characteristics of Thermoplastic Polyurethane on Graphene-Thermoplastic Polyurethane Composite Film. Micromachines, 2021, 12, 129.	2.9	5
10	Self-Formed Lithiophilic Alloy Buffer Layer on Copper Foam Framework for Advanced Lithium Metal Anodes. ACS Applied Energy Materials, 2021, 4, 4879-4886.	5.1	8
11	Inkjet Printing of Flexible Transparent Conductive Films with Silver Nanowires Ink. Nanomaterials, 2021, 11, 1571.	4.1	21
12	Novel Insights into Inkjet Printed Silver Nanowires Flexible Transparent Conductive Films. International Journal of Molecular Sciences, 2021, 22, 7719.	4.1	17
13	Controllable preparation and electrochemical properties of In-situ annealed LiCoO2 films with a specific crystalline orientation on stainless steel substrates. Solid State Ionics, 2021, 365, 115658.	2.7	5
14	lon-exchange surface modification enhances cycling stability and kinetics of sodium manganese hexacyanoferrate cathode in sodium-ion batteries. Electrochimica Acta, 2021, 390, 138842.	5.2	13
15	3D composite lithium metal with multilevel micro-nano structure combined with surface modification for stable lithium metal anodes. Applied Surface Science, 2021, 570, 151159.	6.1	7
16	Performance of Amorphous Lithium Phosphate Coated Lithium Titanate Electrodes in Extended Working Range of 0.01-3.00 V. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 999.	1.3	1
17	Polymer Electrolyte Film as Robust and Deformable Artificial Protective Layer for High-Performance Lithium Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 2285-2292.	8.0	24
18	Toward Organic Carbonyl-Contained Small Molecules in Rechargeable Batteries: A Review of Current Modified Strategies. ACS Sustainable Chemistry and Engineering, 2020, 8, 15445-15465.	6.7	40

#	Article	IF	CITATIONS
19	Syntheses of Silver Nanowires Ink and Printable Flexible Transparent Conductive Film: A Review. Coatings, 2020, 10, 865.	2.6	28
20	Recent Progress in Stimulus-Responsive Two-Dimensional Metal–Organic Frameworks. , 2020, 2, 779-797.		187
21	Nanostructured potassium–organic framework as an effective anode for potassium-ion batteries with a long cycle life. Nanoscale, 2020, 12, 7870-7874.	5.6	129
22	Ferrocene-Based Mixed-Valence Metal–Organic Framework as an Efficient and Stable Cathode for Lithium-Ion-Based Dual-Ion Battery. ACS Applied Materials & Samp; Interfaces, 2020, 12, 32719-32725.	8.0	87
23	Low-temperature fusion fabrication of Li-Cu alloy anode with in situ formed 3D framework of inert LiCu nanowires for excellent Li storage performance. Science Bulletin, 2020, 65, 1907-1915.	9.0	50
24	LiCoO2 thin film cathode sputtered onto 500°C substrate. Electrochimica Acta, 2020, 354, 136668.	5.2	15
25	Fast ion/electron conducting scaffold of Li-Zn dual-phase alloy enable uniform deposition of Li metal at high current densities. Journal of Energy Chemistry, 2020, 51, 285-292.	12.9	32
26	ZnF2 coated three dimensional Li-Ni composite anode for improved performance. Journal of Materiomics, 2019, 5, 176-184.	5.7	19
27	Reactive Conductive Ink Capable of In Situ and Rapid Synthesis of Conductive Patterns Suitable for Inkjet Printing. Molecules, 2019, 24, 3548.	3.8	9
28	Sizeâ€, Waterâ€, and Defectâ€Regulated Potassium Manganese Hexacyanoferrate with Superior Cycling Stability and Rate Capability for Lowâ€Cost Sodiumâ€lon Batteries. Small, 2019, 15, e1902420.	10.0	82
29	A dual-phase Li–Ca alloy with a patternable and lithiophilic 3D framework for improving lithium anode performance. Journal of Materials Chemistry A, 2019, 7, 22377-22384.	10.3	42
30	Partly lithiated graphitic carbon foam as 3D porous current collectors for dendrite-free lithium metal anodes. Electrochemistry Communications, 2019, 107, 106535.	4.7	26
31	Three-dimensional carbon material as stable host for dendrite-free lithium metal anodes. Electrochimica Acta, 2019, 301, 251-257.	5.2	32
32	ZrO2 thin film protected li metal anode for improved electrochemical performance. AIP Conference Proceedings, 2019, , .	0.4	3
33	Air-stable lithium metal anode with sputtered aluminum coating layer for improved performance. Electrochimica Acta, 2019, 317, 120-127.	5.2	53
34	Fabrication of PbS QDs/Graphene Heterostructure Photoelectrochemical Cell by Electrochemical Atomic Layer Epitaxy Method. Journal of Nanoscience and Nanotechnology, 2019, 19, 235-239.	0.9	1
35	Porous equipotential body with heterogeneous nucleation sites: A novel 3D composite current collector for lithium metal anode. Electrochimica Acta, 2019, 309, 460-468.	5.2	21
36	Oxalate co-precipitation synthesis of LiNi0.6Co0.2Mn0.2O2 for low-cost and high-energy lithium-ion batteries. Materials Today Communications, 2019, 19, 262-270.	1.9	47

#	Article	IF	CITATIONS
37	Conjugated Dicarboxylate with Extended Naphthyl Skeleton as an Advanced Organic Anode for Potassium-Ion Battery. Journal of the Electrochemical Society, 2019, 166, A5221-A5225.	2.9	34
38	Poly(N-vinylcarbazole) as an advanced organic cathode for potassium-ion-based dual-ion battery. Electrochimica Acta, 2019, 297, 850-855.	5.2	72
39	TiS2 as a high performance potassium ion battery cathode in ether-based electrolyte. Energy Storage Materials, 2018, 12, 216-222.	18.0	129
40	Graphene oxide as a filler to improve the performance of PAN-LiClO4 flexible solid polymer electrolyte. Solid State Ionics, 2018, 315, 7-13.	2.7	104
41	Endowing CuTCNQ with a new role: a high-capacity cathode for K-ion batteries. Chemical Communications, 2018, 54, 5578-5581.	4.1	59
42	Long lifespan lithium metal anodes enabled by Al2O3 sputter coating. Energy Storage Materials, 2018, 10, 16-23.	18.0	174
43	Electrochemical performance of ZnO-coated Li ₄ Ti ₅ O ₁₂ composite electrodes for lithium-ion batteries with the voltage ranging from 3 to 0.01 V. Royal Society Open Science, 2018, 5, 180762.	2.4	11
44	Disodium terephthalate/multiwall-carbon nanotube nanocomposite as advanced anode material for Li-ion batteries. Ionics, 2017, 23, 2613-2619.	2.4	11
45	Pretreatment of Lithium Surface by Using Iodic Acid (HIO ₃) To Improve Its Anode Performance in Lithium Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 7068-7074.	8.0	50
46	Sodium Titanate/Carbon (<scp>Na₂Ti₃O₇</scp> /C) Nanofibers via Electrospinning Technique as the Anode of Sodiumâ€ion Batteries. Chinese Journal of Chemistry, 2017, 35, 79-85.	4.9	24
47	Potassium salts of para-aromatic dicarboxylates as the highly efficient organic anodes for low-cost K-ion batteries. Nano Energy, 2017, 33, 350-355.	16.0	209
48	Sputtering TiO2 on LiCoO2 composite electrodes as a simple and effective coating to enhance high-voltage cathode performance. Journal of Power Sources, 2017, 346, 24-30.	7.8	72
49	Zinc terephthalates ZnC8H4O4 as anodes for lithium ion batteries. Electrochimica Acta, 2017, 235, 304-310.	5.2	22
50	Li metal coated with amorphous Li3PO4 via magnetron sputtering for stable and long-cycle life lithium metal batteries. Journal of Power Sources, 2017, 342, 175-182.	7.8	181
51	Exploitation of redox-active 1,4-dicyanobenzene and 9,10-dicyanoanthracene as the organic electrode materials in rechargeable lithium battery. Electrochemistry Communications, 2017, 75, 29-32.	4.7	47
52	One-step synthesis of novel poly(terephthalate- <i>alt</i> benzoquinone) with high specific capacity as a stable organic cathode for Li-ion batteries. New Journal of Chemistry, 2017, 41, 14539-14544.	2.8	18
53	Al ₂ O ₃ surface coating on LiCoO ₂ through a facile and scalable wet-chemical method towards high-energy cathode materials withstanding high cutoff voltages. Journal of Materials Chemistry A, 2017, 5, 24361-24370.	10.3	127
54	Investigating the Electrochemical Behavior of Cobalt(II) Terephthalate (CoC8H4O4) as the Organic Anode in K-ion Battery. Electrochimica Acta, 2017, 253, 333-338.	5.2	40

#	Article	IF	Citations
55	Stable, fast and high-energy-density LiCoO2 cathode at high operation voltage enabled by glassy B2O3 modification. Journal of Power Sources, 2017, 362, 131-139.	7.8	65
56	Highly twisted organic molecules with ortho linkage as the efficient bipolar hosts for sky-blue thermally activated delayed fluorescence emitter in OLEDs. Organic Electronics, 2017, 50, 153-160.	2.6	12
57	<i>Para</i> -Conjugated Dicarboxylates with Extended Aromatic Skeletons as the Highly Advanced Organic Anodes for K-Ion Battery. ACS Applied Materials & Interfaces, 2017, 9, 27414-27420.	8.0	77
58	Isotropical conductive adhesives with very-long silver nanowires as conductive fillers. Journal of Materials Science: Materials in Electronics, 2017, 28, 10-17.	2.2	15
59	Metal Organic Frameworkâ€Derived Cobalt Dicarboxylate as a Highâ€Capacity Anode Material for Lithiumâ€ion Batteries. Energy Technology, 2017, 5, 637-642.	3.8	21
60	Silver Nanowires Buried at the Surface of Mixed Cellulose Ester as Transparent Conducting Electrode. Journal of Nanoscience and Nanotechnology, 2017, 17, 5617-5624.	0.9	5
61	Understanding and suppressing side reactions in Li–air batteries. Materials Chemistry Frontiers, 2017, 1, 2495-2510.	5.9	59
62	Enhanced reversibility and electrochemical performances of mechanically alloyed Cu ₃ Pachieved by Fe addition. RSC Advances, 2016, 6, 26800-26808.	3.6	11
63	Improved high-voltage and high-temperature electrochemical performances of LiCoO2 cathode by electrode sputter-coating with Li3PO4. Journal of Power Sources, 2016, 322, 10-16.	7.8	78
64	Silver Terephthalate (Ag 2 C 8 H 4 O 4) Offering in-situ Formed Metal/Organic Nanocomposite as the Highly Efficient Organic Anode in Li-ion and Na-ion Batteries. Electrochimica Acta, 2016, 219, 418-424.	5.2	43
65	Improved performance of LiCoO ₂ cathode enabled by electrode sputtering coating with Al ₂ O ₃ ., 2016, , .		0
66	Performance of "Polymer-in-Salt―Electrolyte PAN-LiTFSI Enhanced by Graphene Oxide Filler. Journal of the Electrochemical Society, 2016, 163, A2248-A2252.	2.9	56
67	Enhanced Interfacial Kinetics and High-Voltage/High-Rate Performance of LiCoO ₂ Cathode by Controlled Sputter-Coating with a Nanoscale Li ₄ Ti ₅ O ₁₂ Ionic Conductor. ACS Applied Materials & Samp; Interfaces, 2016, 8, 34123-34131.	8.0	50
68	Organic Potassium Terephthalate (K2C8H4O4) with Stable Lattice Structure Exhibits Excellent Cyclic and Rate Capability in Li-ion Batteries. Electrochimica Acta, 2016, 222, 1086-1093.	5.2	48
69	Extremely Accessible Potassium Nitrate (KNO ₃) as the Highly Efficient Electrolyte Additive in Lithium Battery. ACS Applied Materials & Samp; Interfaces, 2016, 8, 15399-15405.	8.0	123
70	Ultra-multiple and reproducible resistance levels based on intrinsic crystallization properties of Ge1Sb4Te7 film. Applied Surface Science, 2016, 369, 348-353.	6.1	4
71	Impact of the film thickness and substrate on the thermopower measurement of thermoelectric films by the potential-Seebeck microprobe (PSM). Applied Thermal Engineering, 2016, 107, 552-559.	6.0	7
72	Silver-mediated calcium terephthalate with enhanced electronic conductivity as an organic anode for efficient Li-ion batteries. RSC Advances, 2016, 6, 29404-29409.	3.6	7

#	Article	IF	CITATIONS
73	Extending the High-Voltage Capacity of LiCoO ₂ Cathode by Direct Coating of the Composite Electrode with Li ₂ CO ₃ via Magnetron Sputtering. Journal of Physical Chemistry C, 2016, 120, 422-430.	3.1	97
74	The electrochemical behaviors of Li2C8H4O6 and its corresponding organic acid C8H6O6 as anodes for Li-ion batteries. Journal of Electroanalytical Chemistry, 2016, 761, 74-79.	3.8	29
75	Thermal conductivity study of micrometer-thick thermoelectric films by using three-omega methods. Applied Thermal Engineering, 2016, 98, 683-689.	6.0	19
76	Alkaline Earth Metal Terephthalates MC8H4O4 (M=Ca, Sr, Ba) as Anodes for Lithium Ion Batteries. Electrochimica Acta, 2016, 196, 118-124.	5.2	39
77	Sulphur-doped ordered mesoporous carbon with enhanced electrocatalytic activity for the oxygen reduction reaction. Journal of Energy Chemistry, 2016, 25, 566-570.	12.9	46
78	Sintering Behavior and Effect of Silver Nanowires on the Electrical Conductivity of Electrically Conductive Adhesives. Journal of Nanoscience and Nanotechnology, 2016, 16, 1125-1137.	0.9	4
79	Quick Fabrication of Large-area Organic Semiconductor Single Crystal Arrays with a Rapid Annealing Self-Solution-Shearing Method. Scientific Reports, 2015, 5, 13195.	3.3	36
80	Structure-Property of Metal Organic Frameworks Calcium Terephthalates Anodes for Lithium-ion Batteries. Electrochimica Acta, 2015, 173, 235-241.	5.2	59
81	New insights into silver nanowires filled electrically conductive adhesives. Journal of Materials Science: Materials in Electronics, 2015, 26, 621-629.	2.2	16
82	Dicarboxylate CaC8H4O4 as a high-performance anode for Li-ion batteries. Nano Research, 2015, 8, 523-532.	10.4	58
83	Calcium terephthalate/graphite composites as anode materials for lithium-ion batteries. Ionics, 2015, 21, 1893-1899.	2.4	27
84	A comprehensive study of transparent conductive silver nanowires films with mixed cellulose ester as matrix. Journal of Materials Science: Materials in Electronics, 2015, 26, 6532-6538.	2.2	13
85	Electrochemical characterization of Co3O4/MCNTs composite anode materials for sodium-ion batteries. Journal of Materials Science, 2015, 50, 4142-4148.	3.7	49
86	Three-dimensional nanoporous and nanopillar composite Cu-Sn electrode for lithium-ion battery. Journal of Solid State Electrochemistry, 2015, 19, 1765-1771.	2.5	18
87	Polyimide (PI) high-quality polymer dielectric films with the features of anti-solvents and large-area consistency for field-effect transistors. RSC Advances, 2015, 5, 88059-88062.	3.6	6
88	Synthesis and electrical properties of silver nanoplates for electronic applications. Materials Science-Poland, 2015, 33, 242-250.	1.0	3
89	A better understanding of the capacity fading mechanisms of Li ₃ V ₂ (PO ₄) ₃ . RSC Advances, 2015, 5, 71684-71691.	3.6	21
90	Superior electrochemical performance of LiCoO2 electrodes enabled by conductive Al2O3-doped ZnO coating via magnetron sputtering. Journal of Power Sources, 2015, 298, 114-122.	7.8	63

#	Article	IF	Citations
91	A comprehensive study of silver nanowires filled electrically conductive adhesives. Journal of Materials Science: Materials in Electronics, 2015, 26, 7927-7935.	2.2	21
92	Enhancing the Thermoelectric Properties of the Electroplated Bi 2 Te 3 Films by Tuning the Pulse Off-to-on Ratio. Electrochimica Acta, 2015, 178, 217-224.	5.2	25
93	Influence of curing procedures on the electrical properties of epoxy-based isotropic conductive adhesives. , 2014, , .		3
94	Sintering behavior and effect of silver nanoparticles on the resistivity of electrically conductive adhesives composed of silver flakes. Journal of Adhesion Science and Technology, 2014, 28, 2402-2415.	2.6	12
95	Porous Li ₂ C ₈ H ₄ O ₄ coated with N-doped carbon by using CVD as an anode material for Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 5696-5702.	10.3	62
96	Solution-processed high-performance flexible 9, 10-bis(phenylethynyl)anthracene organic single-crystal transistor and ring oscillator. Applied Physics Letters, 2014, 104, .	3.3	28
97	Rice husk derived carbon–silica composites as anodes for lithium ion batteries. RSC Advances, 2014, 4, 64744-64746.	3.6	62
98	Improved Electrochemical Performance of LiCoO ₂ Electrodes with ZnO Coating by Radio Frequency Magnetron Sputtering. ACS Applied Materials & Samp; Interfaces, 2014, 6, 15853-15859.	8.0	106
99	Molybdenum thin films with low resistivity and superior adhesion deposited by radio-frequency magnetron sputtering at elevated temperature. Thin Solid Films, 2014, 567, 64-71.	1.8	51
100	Solid-state synthesis of graphite carbon-coated Li4Ti5O12 anode for lithium ion batteries. Ionics, 2014, 20, 1377-1383.	2.4	25
101	Superior rate performance of Li 4 Ti 5 O 12 /TiO 2 /C/CNTs composites via microemulsion-assisted method as anodes for lithium ion battery. Electrochimica Acta, 2014, 142, 202-207.	5.2	45
102	Solid-state synthesis of submicron-sized Li4Ti5O12/Li2TiO3 composites with rich grain boundaries for lithium ion batteries. Journal of Power Sources, 2014, 266, 114-120.	7.8	78
103	Microspherical Na2Ti3O7 prepared by spray-drying method as anode material for sodium-ion battery. Solid State Ionics, 2014, 262, 192-196.	2.7	45
104	Magnesium Terephthalate as an Organic Anode Material for Sodium Ion Batteries. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2014, 30, 1787-1793.	4.9	15
105	Large scale, flexible organic transistor arrays and circuits based on polyimide materials. Organic Electronics, 2013, 14, 2528-2533.	2.6	60
106	Surface structure and high-rate performance of spinel Li4Ti5O12 coated with N-doped carbon as anode material for lithium-ion batteries. Journal of Power Sources, 2013, 239, 538-545.	7.8	94
107	Sequential Evaporation of Bi-Te Thin Films with Controllable Composition and Their Thermoelectric Transport Properties. Journal of Electronic Materials, 2013, 42, 2184-2191.	2.2	8
108	Surface-enhanced Raman Scattering (SERS) Effect of Hexagonally Arranged Gold Nanoparticle Array with 29-nm Particles and 23-nm Gaps Using Liquid-crystalline Block-copolymer Template. Chemistry Letters, 2013, 42, 71-73.	1.3	11

#	Article	IF	Citations
109	New Applications of Solid State Ionics. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2013, 28, 1163-1164.	1.3	3
110	Si Nanowire Anode Prepared by Chemical Etching for High Energy Density Lithium-ion Battery. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2013, 28, 1207-1212.	1.3	8
111	Selective deposition on block copolymer film by thermal evaporation of silver. Surface and Coatings Technology, 2012, 206, 4634-4638.	4.8	7
112	Bulk higher manganese silicide thermoelectric materials and modules. Procedia Engineering, 2012, 27, 94-102.	1.2	2
113	One-step synthesis of Cu(In,Ga)Se2 absorber layers by magnetron sputtering from a single quaternary target. Thin Solid Films, 2012, 520, 6068-6074.	1.8	36
114	Solvent induced formation of an ordered nanorod array of gold/polymer composite by block copolymer film templating. Nanotechnology, 2011, 22, 335301.	2.6	12
115	LiCoO2 thin film cathode fabricated by pulsed laser deposition. Rare Metals, 2011, 30, 106-110.	7.1	4
116	Phase-selective staining of metal salt for scanning electron microscopy imaging of block copolymer film. Ultramicroscopy, 2010, 110, 1338-1342.	1.9	8
117	Tailored Ag nanoparticle array fabricated by block copolymer photolithography. Thin Solid Films, 2008, 516, 2577-2581.	1.8	34
118	Control of Regular Nanostructures Self-Assembled in an Amphiphilic Diblock Liquid-Crystalline Copolymer. Molecular Crystals and Liquid Crystals, 2007, 478, 271/[1027]-281/[1037].	0.9	8
119	Stable macroscopic nanocylinder arrays in an amphiphilic diblock liquid-crystalline copolymer with successive hydrogen bonds. Journal of Materials Chemistry, 2007, 17, 3485.	6.7	27
120	Anisotropic Ion Conductivity in Liquid Crystalline Diblock Copolymer Membranes with Perpendicularly Oriented PEO Cylindrical Domains. Macromolecules, 2007, 40, 8125-8128.	4.8	84
121	Template- and Vacuum-Ultraviolet- Assisted Fabrication of a Ag-Nanoparticle Array on Flexible and Rigid Substrates. Advanced Materials, 2007, 19, 1267-1271.	21.0	73
122	Effect of lithium trifluoromethanesulfonate on the phase diagram of a liquid-crystalline amphiphilic diblock copolymer. Journal of Applied Crystallography, 2007, 40, s585-s589.	4.5	4
123	Influence of doping location and width of dimethylquinacridone on the performance of organic light emitting devices. Journal Physics D: Applied Physics, 2005, 38, 392-396.	2.8	11
124	Enhanced performance of organic light emitting device by insertion of conducting/insulating WO3 anodic buffer layer. Synthetic Metals, 2005, 151, 141-146.	3.9	110
125	The study of surface films formed on SnO anode in lithium rechargeable batteries by FTIR spectroscopy. Journal of Power Sources, 2002, 107, 1-4.	7.8	48
126	X-Ray Diffraction and Vibrational Spectroscopic Studies on PAN-LiTFSI Polymer Electrolytes. Journal of the Electrochemical Society, 2000, 147, 2653.	2.9	61

#	Article	IF	CITATIONS
127	The interaction between SnO anode and electrolytes. Journal of Power Sources, 1999, 81-82, 346-351.	7.8	25