Jibran Tahir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/64416/publications.pdf

Version: 2024-02-01

20	419	1163117	794594
papers	citations	h-index	g-index
22	22	22	633
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants. BMC Genomics, 2018, 19, 257.	2.8	167
2	Improving nodulation, growth and yield of Cicer arietinum L. through bacterial ACC-deaminase induced changes in root architecture. European Journal of Soil Biology, 2010, 46, 342-347.	3.2	59
3	Activation of <i><scp>R</scp></i> â€mediated innate immunity and disease susceptibility is affected by mutations in a cytosolic <i><scp>O</scp></i> êacetylserine (thiol) lyase in <scp>A</scp> rabidopsis. Plant Journal, 2013, 73, 118-130.	5.7	36
4	Multiple quantitative trait loci contribute to resistance to bacterial canker incited by Pseudomonas syringae pv. actinidiae in kiwifruit (Actinidia chinensis). Horticulture Research, 2019, 6, 101.	6.3	24
5	Arabidopsis AGAMOUS Regulates Sepal Senescence by Driving Jasmonate Production. Frontiers in Plant Science, 2017, 8, 2101.	3.6	20
6	Genetic and cytological analyses reveal the recombination landscape of a partially differentiated plant sex chromosome in kiwifruit. BMC Plant Biology, 2019, 19, 172.	3.6	16
7	QTL Mapping for Resistance to Cankers Induced by Pseudomonas syringae pv. actinidiae (Psa) in a Tetraploid Actinidia chinensis Kiwifruit Population. Pathogens, 2020, 9, 967.	2.8	14
8	Rapid Methodologies for Assessing <i>Pseudomonas syringae </i> pv. <i>actinidiae </i> Colonization and Effector-Mediated Hypersensitive Response in Kiwifruit. Molecular Plant-Microbe Interactions, 2021, 34, 880-890.	2.6	13
9	Postâ€ŧranslational modifications in effectors and plant proteins involved in host–pathogen conflicts. Plant Pathology, 2019, 68, 628-644.	2.4	10
10	Peridermal fruit skin formation in Actinidia sp. (kiwifruit) is associated with genetic loci controlling russeting and cuticle formation. BMC Plant Biology, 2021, 21, 334.	3.6	9
11	First Chromosome-Scale Assembly and Deep Floral-Bud Transcriptome of a Male Kiwifruit. Frontiers in Genetics, $2022,13,.$	2.3	9
12	Two Loci, RiAF3 and RiAF4, Contribute to the Annual-Fruiting Trait in Rubus. Frontiers in Plant Science, 2019, 10, 1341.	3.6	8
13	Molecular Characterisation of a Supergene Conditioning Super-High Vitamin C in Kiwifruit Hybrids. Plants, 2019, 8, 237.	3.5	7
14	\hat{l}^2 -Substituting alanine synthases: roles in cysteine metabolism and abiotic and biotic stress signalling in plants. Functional Plant Biology, 2016, 43, 307.	2.1	6
15	Construction of a high-density genetic map for hexaploid kiwifruit (<i>Actinidia chinensis</i>	784314 rg 	BT ₅ /Overloc <mark>k</mark>
16	Tolerance to Pseudomonas syringae pv. actinidiae in a kiwifruit breeding parent is conferred by multiple loci. Acta Horticulturae, 2018, , 67-70.	0.2	4
17	RIN4 homologs from important crop species differentially regulate the Arabidopsis NB-LRR immune receptor, RPS2. Plant Cell Reports, 2021, 40, 2341-2356.	5.6	4
18	Mapping a potential resistance gene forRaspberry bushy dwarf virusin red raspberry. Acta Horticulturae, 2016, , 121-128.	0.2	3

#	Article	IF	CITATIONS
19	Agro-Morphological, Yield, and Genotyping-by-Sequencing Data of Selected Wheat (Triticum aestivum) Germplasm From Pakistan. Frontiers in Genetics, 2021, 12, 617772.	2.3	2
20	Assembling the genome of a female Actinidia chinensis genotype using proximity-based chromosomal interactions generated from the genome of a male A. chinensis. Acta Horticulturae, 2018, , 81-90.	0.2	0