Maaroof Zarei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6441521/publications.pdf

Version: 2024-02-01

414414 304743 1,173 60 22 32 citations h-index g-index papers 85 85 85 787 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Antifouling coating based on biopolymers (PCL/ PLA) and bioactive extract from the sea cucumber Stichopus herrmanni. AMB Express, 2022, 12, 24.	3.0	8
2	Anticancer activity and evaluation of apoptotic genes expression of 2-azetidinones containing anthraquinone moiety. Molecular Diversity, 2021, 25, 2429-2439.	3.9	8
3	Synthesis, in vitro biological evaluation and in silico molecular docking studies of novel \hat{l}^2 -lactam-anthraquinone hybrids. Bioorganic Chemistry, 2020, 95, 103515.	4.1	25
4	CuFe ₂ O ₄ nanoparticles catalyze the reaction of alkynes and nitrones for the synthesis of 2-azetidinones. New Journal of Chemistry, 2020, 44, 17341-17345.	2.8	5
5	Impact of silver nanoparticles on the growth, fatty acid profile, and antioxidative response of Nannochloropsis oculata. Acta Physiologiae Plantarum, 2020, 42, 1.	2.1	19
6	Antifouling and antibacterial activities of bioactive extracts from different organs of the sea cucumber Holothuria leucospilota. Helgoland Marine Research, 2020, 74, .	1.3	17
7	Application of magnetic Fe $<$ sub $>3sub>0<sub>4sub>nanoparticles as a reusable heterogeneous catalyst in the synthesis of \hat{I}^2-lactams containing amino groups. New Journal of Chemistry, 2019, 43, 12690-12697.$	2.8	12
8	Copper-catalyzed thioarylation or thioalkylation of halogenated 2-azetidinones using a thiol precursor. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2018, 149, 1401-1408.	1.8	2
9	One-pot Vilsmeier reagent-mediated multicomponent reaction: A direct synthesis of oxazolones and Erlenmeyer azlactones from carboxylic acids. Comptes Rendus Chimie, 2018, 21, 9-13.	0.5	7
10	Synthesis of Novel βâ€Lactams from Phenothiazinâ€10â€ylacetic Acid. Journal of Heterocyclic Chemistry, 2018, 55, 1085-1091.	2.6	14
11	A Mild and Efficient Oneâ€Pot Preparation of 1,2,4â€Oxadiazoles from Nitriles and Carboxylic Acids Using Vilsmeier Reagent. ChemistrySelect, 2018, 3, 11273-11276.	1.5	19
12	Î²â€Łactam Preparation via Staudinger Reaction with Activated Dimethylsulfoxide. Journal of Heterocyclic Chemistry, 2017, 54, 1161-1166.	2.6	8
13	One-pot synthesis of 1,3,4-thiadiazoles using Vilsmeier reagent as a versatile cyclodehydration agent. Tetrahedron, 2017, 73, 1867-1872.	1.9	27
14	Convenient Vilsmeier Reagent Mediated One-Pot Synthesis of Symmetrical and Asymmetrical 1,3,4-Oxadiazoles. Organic Preparations and Procedures International, 2017, 49, 355-362.	1.3	9
15	Cerium(IV) Tetrabutylammonium Nitrate (CTAN): A Mild and Efficient N-dearylation Agent for Synthesis of N-unsubstituted 2-azetidinones. Journal of Chemical Research, 2017, 41, 246-249.	1.3	4
16	Synthesis of acylhydrazines and, symmetrical and asymmetrical diacylhydrazines from carboxylic acid via the Vilsmeier reagent mediated process. Research on Chemical Intermediates, 2017, 43, 1909-1918.	2.7	8
17	2-Azetidinones in One-Pot from Imines and Carboxylic Acids via 1,4-Dichlorophthalazine. Current Organic Synthesis, 2017, 14, 590-595.	1.3	3
18	One Pot, Simple, and Efficient Synthesis of 2-Azetidinones Mediated by 3-(Diethoxyphosphoryloxy)-1,2,3-benzotriazin-4-(3H)-one. Letters in Organic Chemistry, 2017, 14, .	0.5	3

#	Article	IF	CITATIONS
19	Tosylimidazole-mediated one-pot synthesis of 2-azetidinones. Journal of Chemical Research, 2016, 40, 532-534.	1.3	5
20	Synthesis of \hat{l}^2 -lactams via Staudinger reaction using $\langle i \rangle N \langle i \rangle$ -ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline as a carboxylic acid activator. Synthetic Communications, 2016, 46, 2031-2036.	2.1	8
21	Preparation of 2-azetidinones by cyclocondensation of carboxylic acids and imines via diphosphorustetraiodide. Synthetic Communications, 2016, 46, 523-527.	2.1	10
22	An Easy and Convenient Synthesis of β-Lactams via a One-Pot Staudinger Reaction with 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium Chloride Starting from Substituted Carboxylic Acids. Letters in Organic Chemistry, 2015, 12, 44-49.	0.5	5
23	Facile Synthesis of \hat{l}^2 -Lactam Derivatives by the Staudinger Reaction Using 3,6-Dichlorotetrazine. Journal of Chemical Research, 2015, 39, 698-700.	1.3	3
24	Application of 2-chloro-4,6-dimethoxy-1,3,5-triazine in the synthesis of 2-azetidinones. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2015, 146, 941-946.	1.8	7
25	Silphos as an efficient heterogeneous reagent for the synthesis of 2-azetidinones. Heterocyclic Communications, 2014, 20, 355-359.	1.2	4
26	An efficient and green method for the synthesis of 2-azetidinones mediated by propylphosphonic anhydride (T3P®). Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2014, 145, 1495-1499.	1.8	23
27	A straightforward approach to 2-azetidinones from imines and carboxylic acids using dimethyl sulfoxide and acetic anhydride. Tetrahedron Letters, 2014, 55, 5354-5357.	1.4	26
28	A convenient synthesis of 2-azetidinones via 2-fluoro-1-methylpyridinium p-toluenesulfonate. Monatshefte FA½r Chemie, 2013, 144, 1021-1025.	1.8	26
29	Thionation of \hat{i}^2 -lactams to \hat{i}^2 -thiolactams by silica-supported P ₂ S ₅ . Journal of Sulfur Chemistry, 2013, 34, 370-376.	2.0	4
30	Synthesis of \hat{l}^2 -Lactams from Acids and Imines Using Thiocarbonyldiimidazole. Synthetic Communications, 2013, 43, 728-734.	2.1	25
31	Phosphonitrilic chloride as an efficient reagent for the synthesis of \hat{l}^2 -sultams. Tetrahedron Letters, 2013, 54, 1100-1102.	1.4	8
32	A Simple and Oneâ€Pot Synthesis of βâ€Sultams by Using the Vilsmeier Reagent. Journal of Heterocyclic Chemistry, 2013, 50, 438-441.	2.6	9
33	Convenient Propylphosphonic Anhydride (T3P \hat{A}^{\otimes})-Mediated Synthesis of \hat{I}^2 -Sultams. Mendeleev Communications, 2013, 23, 39-40.	1.6	4
34	A facile and effective synthesis of 2-azetidinones via phosphonitrilic chloride. Tetrahedron, 2013, 69, 6620-6626.	1.9	30
35	Oxidative N-deprotection of 2-azetidinones using silver(II)–persulfate complexes as a twin oxidant/co-oxidant. Tetrahedron Letters, 2013, 54, 4174-4177.	1.4	6
36	One-step Synthesis of β-lactams Using Cyanuric Fluoride. Journal of Chemical Research, 2013, 37, 25-27.	1.3	23

3

#	Article	IF	CITATIONS
37	A Simple and Highly Efficient Procedure for One-Pot Synthesis of 2- Azetidinones Using 3,5-Dinitrobenzoyl Chloride. Letters in Organic Chemistry, 2013, 10, 645-650.	0.5	7
38	One-Pot Sequence Synthesis of Azetidin-2-One Using Diethyl Chlorophosphate. Journal of Chemical Research, 2012, 36, 118-120.	1.3	23
39	Utilization of DMF–PhCOCl Adduct as an Acid Activator in a New and Convenient Method for Preparation of β-Lactams. Bulletin of the Chemical Society of Japan, 2012, 85, 360-368.	3.2	31
40	On-column N-dearylation of 2-azetidinones by silica-supported ceric ammonium nitrate. Tetrahedron, 2012, 68, 5505-5512.	1.9	26
41	Synthesis of Structurally Diverse 2-Azetidinones via Staudinger Reaction on a Solid Support. Bulletin of the Chemical Society of Japan, 2011, 84, 320-327.	3.2	31
42	3-Thiolated 2-azetidinones: synthesis and inÂvitro antibacterial and antifungal activities. Tetrahedron, 2011, 67, 5832-5840.	1.9	57
43	Argentic oxide mediated N-dearylation of \hat{l}^2 -lactams. Tetrahedron Letters, 2011, 52, 1192-1194.	1.4	5
44	A Mild and Efficient Route to 2-Azetidinones Using the Cyanuric Chloride-DMF Complex. Synlett, 2011, 2011, 2572-2576.	1.8	10
45	Efficient one-pot synthesis of 2-azetidinones from acetic acid derivatives and imines using methoxymethylene-N,N-dimethyliminium salt. Tetrahedron, 2010, 66, 5017-5023.	1.9	54
46	Synthesis of N-unsubstituted \hat{I}^2 -lactams from N-alkoxyphenyl- \hat{I}^2 -lactams with cobalt(III) fluoride. Tetrahedron Letters, 2010, 51, 5791-5794.	1.4	10
47	Petra, Osiris, and Molinspiration Together as a Guide in Drug Design: Predictions and Correlation Structure/Antibacterial Activity Relationships of New $\langle i \rangle N \langle j \rangle$ -Sulfonyl Monocyclic \hat{I}^2 -Lactams. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 185, 491-497.	1.6	43
48	Synthesis of New $\langle i \rangle N \langle i \rangle$ -Sulfonyl Monocyclic \hat{l}^2 -Lactams and the Investigation of Their Antibacterial Activities. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 185, 287-297.	1.6	26
49	Ceric Ammonium Nitrate on Silica Gel for Solid–Solid PhaseN-Dearylation of β -Lactams. Phosphorus, Sulfur and Silicon and the Related Elements, 2009, 184, 1738-1749.	1.6	9
50	The Vilsmeier reagent: a useful and versatile reagent for the synthesis of 2-azetidinones. Tetrahedron, 2009, 65, 2927-2934.	1.9	65
51	DMF-dimethyl sulfate as a new reagent for the synthesis of \hat{l}^2 -lactams. Tetrahedron Letters, 2009, 50, 1568-1570.	1.4	45
52	Solidâ€Solid Phase and Solventâ€Free Oxidative Removal ofNâ€(4â€Alkoxyphenyl) Groups of Monocyclic Î²â€Łactams with Ceric Ammonium Nitrate as a Cheap, Simple, and Efficient Method. Synthetic Communications, 2008, 38, 1837-1845.	2.1	10
53	From Solution-Phase to â€~On-Column' N-Dearylation of β-Lactams by Silica-Supported Ceric Ammonium Nitrate (CAN-SiO2). Synlett, 2008, 2008, 381-385.	1.8	12
54	2-[1-(4-Ethoxyphenyl)-2-oxo-4-styrylazetidin-3-yl]isoindoline-1,3-dione. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o924-o924.	0.2	8

#	Article	lF	CITATION
55	Synthesis of Novel N-(4-Ethoxyphenyl) Azetidin-2-ones and Their Oxidative N-Deprotection by Ceric Ammonium Nitrate. Molecules, 2007, 12, 2364-2379.	3.8	40
56	The Vilsmeier reagent as an efficient acid activator for the synthesis of \hat{l}^2 -lactams. Tetrahedron Letters, 2007, 48, 8712-8714.	1.4	46
57	Synthesis of Novel N-Sulfonyl Monocyclic \hat{l}^2 -Lactams as Potential Antibacterial Agents. Molecules, 2006, 11 , 49-58.	3.8	53
58	Crystal Structure of 2-Methoxy-6-(pyrazin-2-yl iminomethyl)phenol, C12H11N3O2. Analytical Sciences: X-ray Structure Analysis Online, 2005, 21, X117-X118.	0.1	1
59	(2-Chloropyridin-3-yl)(4-nitrobenzylidene)amine. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, 0776-0778.	0.2	16
60	Synthesis of Novel Azo Schiff Bases and Their Antibacterial and Antifungal Activities. Molecules, 2004, 9, 815-824.	3.8	121