Michael Schmid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6441165/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An integrative strategy to identify the entire protein coding potential of prokaryotic genomes by proteogenomics. Genome Research, 2017, 27, 2083-2095.	2.4	112
2	Pushing the limits of de novo genome assembly for complex prokaryotic genomes harboring very long, near identical repeats. Nucleic Acids Research, 2018, 46, 8953-8965.	6.5	104
3	Long-read based de novo assembly of low-complexity metagenome samples results in finished genomes and reveals insights into strain diversity and an active phage system. BMC Microbiology, 2019, 19, 143.	1.3	104
4	Competition assays and physiological experiments of soil and phyllosphere yeasts identify Candida subhashii as a novel antagonist of filamentous fungi. BMC Microbiology, 2017, 17, 4.	1.3	77
5	Comparative Genomics of Completely Sequenced Lactobacillus helveticus Genomes Provides Insights into Strain-Specific Genes and Resolves Metagenomics Data Down to the Strain Level. Frontiers in Microbiology, 2018, 9, 63.	1.5	73
6	Complete genome sequence of Pseudomonas citronellolis P3B5, a candidate for microbial phyllo-remediation of hydrocarbon-contaminated sites. Standards in Genomic Sciences, 2016, 11, 75.	1.5	49
7	Pseudomonas orientalis F9: A Potent Antagonist against Phytopathogens with Phytotoxic Effect in the Apple Flower. Frontiers in Microbiology, 2018, 9, 145.	1.5	34
8	Short communication: Heat-resistant Escherichia coli as potential persistent reservoir of extended-spectrum β-lactamases and Shiga toxin-encoding phages in dairy. Journal of Dairy Science, 2016, 99, 8622-8632.	1.4	30
9	Biofilm Formation Potential of Heat-Resistant Escherichia coli Dairy Isolates and the Complete Genome of Multidrug-Resistant, Heat-Resistant Strain FAM21845. Applied and Environmental Microbiology, 2017, 83, .	1.4	29
10	The neonicotinoid thiacloprid causes transcriptional alteration of genes associated with mitochondria at environmental concentrations in honey bees. Environmental Pollution, 2020, 266, 115297.	3.7	24
11	Pseudomonas orientalis F9 Pyoverdine, Safracin, and Phenazine Mutants Remain Effective Antagonists against Erwinia amylovora in Apple Flowers. Applied and Environmental Microbiology, 2020, 86, .	1.4	18
12	Global transcriptome analysis reveals relevant effects at environmental concentrations of cypermethrin in honey bees (Apis mellifera). Environmental Pollution, 2020, 259, 113715.	3.7	15
13	Evaluation of Oxford Nanopore MinION RNA-Seq Performance for Human Primary Cells. International Journal of Molecular Sciences, 2021, 22, 6317.	1.8	8
14	Phospho-RNA sequencing with circAID-p-seq. Nucleic Acids Research, 2021, , .	6.5	0