List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/644102/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Intestinal Microbiota Affect Central Levels of Brain-Derived Neurotropic Factor and Behavior in Mice. Gastroenterology, 2011, 141, 599-609.e3.	1.3	1,380
2	Age-Associated Microbial Dysbiosis Promotes Intestinal Permeability, Systemic Inflammation, and Macrophage Dysfunction. Cell Host and Microbe, 2017, 21, 455-466.e4.	11.0	799
3	Chronic Gastrointestinal Inflammation Induces Anxiety-Like Behavior and Alters Central Nervous System Biochemistry in Mice. Gastroenterology, 2010, 139, 2102-2112.e1.	1.3	553
4	Innate and Adaptive Immunity Cooperate Flexibly to Maintain Host-Microbiota Mutualism. Science, 2009, 325, 617-620.	12.6	443
5	Visceral hyperalgesia and intestinal dysmotility in a mouse model of postinfective gut dysfunction. Gastroenterology, 2004, 127, 179-187.	1.3	407
6	Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Science Translational Medicine, 2017, 9, .	12.4	366
7	Modulation of intestinal barrier by intestinal microbiota: Pathological and therapeutic implications. Pharmacological Research, 2013, 69, 42-51.	7.1	350
8	Between Celiac Disease and Irritable Bowel Syndrome: The "No Man's Land―of Gluten Sensitivity. American Journal of Gastroenterology, 2009, 104, 1587-1594.	0.4	267
9	The microbiota–gut–brain axis in gastrointestinal disorders: stressed bugs, stressed brain or both?. Journal of Physiology, 2014, 592, 2989-2997.	2.9	242
10	Coeliac disease. Nature Reviews Disease Primers, 2019, 5, 3.	30.5	240
11	Faecalibacterium prausnitzii prevents physiological damages in a chronic low-grade inflammation murine model. BMC Microbiology, 2015, 15, 67.	3.3	208
12	The Commensal Bacterium Faecalibacterium prausnitzii Is Protective in DNBS-induced Chronic Moderate and Severe Colitis Models. Inflammatory Bowel Diseases, 2014, 20, 417-430.	1.9	204
13	Novel players in coeliac disease pathogenesis: role of the gut microbiota. Nature Reviews Gastroenterology and Hepatology, 2015, 12, 497-506.	17.8	200
14	Duodenal Bacteria From Patients With Celiac Disease andÂHealthy Subjects Distinctly Affect Gluten BreakdownÂandÂlmmunogenicity. Gastroenterology, 2016, 151, 670-683.	1.3	177
15	High salt diet exacerbates colitis in mice by decreasing Lactobacillus levels and butyrate production. Microbiome, 2018, 6, 57.	11.1	176
16	Lactobacillus paracasei normalizes muscle hypercontractility in a murine model of postinfective gut dysfunction. Gastroenterology, 2004, 127, 826-837.	1.3	171
17	Is Irritable Bowel Syndrome a Low-Grade Inflammatory Bowel Disease?. Gastroenterology Clinics of North America, 2005, 34, 235-245.	2.2	165

#	Article	IF	CITATIONS
19	Commensal microbiota induces colonic barrier structure and functions that contribute to homeostasis. Scientific Reports, 2018, 8, 14184.	3.3	140
20	Polymeric Binders Suppress Gliadin-Induced Toxicity in the Intestinal Epithelium. Gastroenterology, 2009, 136, 288-298.	1.3	127
21	Commensal and Probiotic Bacteria Influence Intestinal Barrier Function and Susceptibility to Colitis in Nod1â°'/â°';Nod2â°'/â°' Mice. Inflammatory Bowel Diseases, 2012, 18, 1434-1446.	1.9	114
22	Antidepressants Attenuate Increased Susceptibility to Colitis in a Murine Model of Depression. Gastroenterology, 2006, 130, 1743-1753.	1.3	111
23	Anxiety and Depression Increase in a Stepwise Manner in Parallel With Multiple FGIDs and Symptom Severity and Frequency. American Journal of Gastroenterology, 2015, 110, 1038-1048.	0.4	108
24	Intestinal Microbiota Modulates Gluten-Induced Immunopathology in Humanized Mice. American Journal of Pathology, 2015, 185, 2969-2982.	3.8	106
25	Duodenal bacterial proteolytic activity determines sensitivity to dietary antigen through protease-activated receptor-2. Nature Communications, 2019, 10, 1198.	12.8	102
26	Aryl hydrocarbon receptor ligand production by the gut microbiota is decreased in celiac disease leading to intestinal inflammation. Science Translational Medicine, 2020, 12, .	12.4	98
27	Lactobacilli Degrade Wheat Amylase Trypsin Inhibitors to Reduce Intestinal Dysfunction Induced by Immunogenic Wheat Proteins. Gastroenterology, 2019, 156, 2266-2280.	1.3	97
28	Larazotide acetate regulates epithelial tight junctions in vitro and in vivo. Peptides, 2012, 35, 86-94.	2.4	96
29	Novel Fecal Biomarkers That Precede Clinical Diagnosis of Ulcerative Colitis. Gastroenterology, 2021, 160, 1532-1545.	1.3	94
30	Safety of Adding Oats to a Gluten-Free Diet for Patients With Celiac Disease: Systematic Review and Meta-analysis of Clinical and Observational Studies. Gastroenterology, 2017, 153, 395-409.e3.	1.3	90
31	CD4+ T-Cell Modulation of Visceral Nociception in Mice. Gastroenterology, 2006, 130, 1721-1728.	1.3	89
32	Differential Induction of Antimicrobial REGIII by the Intestinal Microbiota and Bifidobacterium breve NCC2950. Applied and Environmental Microbiology, 2013, 79, 7745-7754.	3.1	84
33	Ecobiotherapy Rich in Firmicutes Decreases Susceptibility to Colitis in a Humanized Gnotobiotic Mouse Model. Inflammatory Bowel Diseases, 2015, 21, 1883-1893.	1.9	83
34	Impaired hydrogen sulfide synthesis and IL-10 signaling underlie hyperhomocysteinemia-associated exacerbation of colitis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13559-13564.	7.1	79
35	Mechanisms by which gut microorganisms influence food sensitivities. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 7-18.	17.8	75
36	The Copolymer P(HEMA-co-SS) Binds Gluten and Reduces Immune Response in Gluten-Sensitized Mice and Human Tissues. Gastroenterology, 2012, 142, 316-325.e12.	1.3	71

#	Article	IF	CITATIONS
37	Immune-mediated neural dysfunction in a murine model of chronic Helicobacter pylori infection. Gastroenterology, 2002, 123, 1205-1215.	1.3	68
38	Host Responses to Intestinal Microbial Antigens in Gluten-Sensitive Mice. PLoS ONE, 2009, 4, e6472.	2.5	63
39	Novel perspectives on therapeutic modulation of the gut microbiota. Therapeutic Advances in Gastroenterology, 2016, 9, 580-593.	3.2	63
40	Sensitization to Gliadin Induces Moderate Enteropathy and Insulitis in Nonobese Diabetic-DQ8 Mice. Journal of Immunology, 2011, 187, 4338-4346.	0.8	62
41	Novel Role of the Serine Protease Inhibitor Elafin in Gluten-Related Disorders. American Journal of Gastroenterology, 2014, 109, 748-756.	0.4	56
42	Role of gut-brain axis in persistent abnormal feeding behavior in mice following eradication of <i>Helicobacter pylori</i> infection. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R587-R594.	1.8	55
43	Addressing proteolytic efficiency in enzymatic degradation therapy for celiac disease. Scientific Reports, 2016, 6, 30980.	3.3	54
44	Association Between Inflammatory Bowel Diseases and Celiac Disease: A Systematic Review and Meta-Analysis. Gastroenterology, 2020, 159, 884-903.e31.	1.3	54
45	The Chronic Gastrointestinal Consequences Associated With Campylobacter. Current Gastroenterology Reports, 2012, 14, 395-405.	2.5	52
46	Dietary Triggers in Irritable Bowel Syndrome: Is There a Role for Gluten?. Journal of Neurogastroenterology and Motility, 2016, 22, 547-557.	2.4	51
47	Bifidobacterium animalis ssp. lactis CNCM-12494 Restores Gut Barrier Permeability in Chronically Low-Grade Inflamed Mice. Frontiers in Microbiology, 2016, 7, 608.	3.5	50
48	Bifidobacterium infantis NLS Super Strain Reduces the Expression of α-Defensin-5, a Marker of Innate Immunity, in the Mucosa of Active Celiac Disease Patients. Journal of Clinical Gastroenterology, 2017, 51, 814-817.	2.2	49
49	Chronic Gastrointestinal Consequences of Acute Infectious Diarrhea: Evolving Concepts in Epidemiology and Pathogenesis. American Journal of Gastroenterology, 2012, 107, 981-989.	0.4	47
50	Mechanisms of innate immune activation by gluten peptide p31-43 in mice. American Journal of Physiology - Renal Physiology, 2016, 311, G40-G49.	3.4	47
51	Gluten Introduction to Infant Feeding and Risk of Celiac Disease: Systematic Review and Meta-Analysis. Journal of Pediatrics, 2016, 168, 132-143.e3.	1.8	47
52	Inflammation-related differences in mucosa-associated microbiota and intestinal barrier function in colonic Crohn's disease. American Journal of Physiology - Renal Physiology, 2018, 315, G420-G431.	3.4	46
53	The role of luminal factors in the recovery of gastric function and behavioral changes after chronic <i>Helicobacter pylori</i> infection. American Journal of Physiology - Renal Physiology, 2008, 295, G664-G670.	3.4	44
54	BL-7010 Demonstrates Specific Binding to Gliadin and Reduces Gluten-Associated Pathology in a Chronic Mouse Model of Gliadin Sensitivity. PLoS ONE, 2014, 9, e109972.	2.5	41

#	Article	IF	CITATIONS
55	Probiotics for Celiac Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. American Journal of Gastroenterology, 2020, 115, 1584-1595.	0.4	40
56	Celiac disease: should we care about microbes?. American Journal of Physiology - Renal Physiology, 2019, 317, G161-G170.	3.4	39
57	The Risk of Contracting COVID-19 Is Not Increased in Patients With Celiac Disease. Clinical Gastroenterology and Hepatology, 2021, 19, 391-393.	4.4	38
58	Gut microbes and adverse food reactions: Focus on gluten related disorders. Gut Microbes, 2014, 5, 594-605.	9.8	37
59	Intraluminal Administration of Poly I:C Causes an Enteropathy That Is Exacerbated by Administration of Oral Dietary Antigen. PLoS ONE, 2014, 9, e99236.	2.5	37
60	Microbial Regulation of Enteric Eosinophils and Its Impact on Tissue Remodeling and Th2 Immunity. Frontiers in Immunology, 2020, 11, 155.	4.8	36
61	Society for the Study of Celiac Disease position statement on gaps and opportunities in coeliac disease. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 875-884.	17.8	34
62	Tax-Deductible Provisions for Gluten-Free Diet in Canada Compared with Systems for Gluten-Free Diet Coverage Available in Various Countries. Canadian Journal of Gastroenterology and Hepatology, 2015, 29, 104-110.	1.9	33
63	Common ground: shared risk factors for type 1 diabetes and celiac disease. Nature Immunology, 2018, 19, 685-695.	14.5	33
64	Testing for Gluten-Related Disorders in Clinical Practice: The Role of Serology in Managing the Spectrum of Gluten Sensitivity. Canadian Journal of Gastroenterology & Hepatology, 2011, 25, 193-197.	1.7	32
65	Co-factors, Microbes, and Immunogenetics in Celiac Disease to Guide Novel Approaches for Diagnosis and Treatment. Gastroenterology, 2021, 161, 1395-1411.e4.	1.3	32
66	Pharmacological approaches in celiac disease. Current Opinion in Pharmacology, 2015, 25, 7-12.	3.5	31
67	Gluten-Free Diet Reduces Symptoms, Particularly Diarrhea, in Patients With Irritable Bowel Syndrome and AntigliadinÂlgG. Clinical Gastroenterology and Hepatology, 2021, 19, 2343-2352.e8.	4.4	30
68	Gluten Introduction, Breastfeeding, and Celiac Disease: Back to the Drawing Board. American Journal of Gastroenterology, 2016, 111, 12-14.	0.4	29
69	Psychological stress impairs IL22-driven protective gut mucosal immunity against colonising pathobionts. Nature Communications, 2021, 12, 6664.	12.8	26
70	Increased Bacterial Translocation in Gluten-Sensitive Mice Is Independent of Small Intestinal Paracellular Permeability Defect. Digestive Diseases and Sciences, 2012, 57, 38-47.	2.3	25
71	Lymphocyte-mediated regulation of \hat{l}^2 -endorphin in the myenteric plexus. American Journal of Physiology - Renal Physiology, 2007, 292, G344-G348.	3.4	23
72	Review: Effect of probiotics on gastrointestinal function: evidence from animal models. Therapeutic Advances in Gastroenterology, 2009, 2, S31-S35.	3.2	21

#	Article	IF	CITATIONS
73	How infection can incite sensitivity to food. Science, 2017, 356, 29-30.	12.6	21
74	<i>Saccharomyces boulardii</i> CNCM lâ€745 modulates the microbiota–gut–brain axis in a humanized mouse model of Irritable Bowel Syndrome. Neurogastroenterology and Motility, 2021, 33, e13985.	3.0	20
75	Non eliac gluten or wheat sensitivity: It's complicated!. Neurogastroenterology and Motility, 2018, 30, e13392.	3.0	17
76	Epithelial production of elastase is increased in inflammatory bowel disease and causes mucosal inflammation. Mucosal Immunology, 2021, 14, 667-678.	6.0	17
77	Motility Alterations in Celiac Disease and Non-Celiac Gluten Sensitivity. Digestive Diseases, 2015, 33, 200-207.	1.9	15
78	Non-coeliac gluten sensitivity: are we closer to separating the wheat from the chaff?. Gut, 2016, 65, 1921-1922.	12.1	15
79	Effects of Antibiotic Pretreatment of an Ulcerative Colitis-Derived Fecal Microbial Community on the Integration of Therapeutic Bacteria <i>In Vitro</i> . MSystems, 2020, 5, .	3.8	13
80	Metabolism of wheat proteins by intestinal microbes: Implications for wheat related disorders. GastroenterologÃa Y HepatologÃa, 2019, 42, 449-457.	0.5	12
81	The impact of dietary fermentable carbohydrates on a postinflammatory model of irritable bowel syndrome. Neurogastroenterology and Motility, 2019, 31, e13675.	3.0	11
82	Small-Molecule Allosteric Triggers of Clostridium difficile Toxin B Auto-proteolysis as a Therapeutic Strategy. Cell Chemical Biology, 2019, 26, 17-26.e13.	5.2	11
83	Investigation of the Gut Microbiome in Patients with Schizophrenia and Clozapine-Induced Weight Gain: Protocol and Clinical Characteristics of First Patient Cohorts. Neuropsychobiology, 2020, 79, 5-12.	1.9	11
84	The double-edged sword of gut bacteria in celiac disease and implications for therapeutic potential. Mucosal Immunology, 2022, 15, 235-243.	6.0	9
85	Risk perception and knowledge of COVID-19 in patients with celiac disease. World Journal of Gastroenterology, 2021, 27, 1213-1225.	3.3	8
86	Fecal microbiome differs between patients with systemic sclerosis with and without small intestinal bacterial overgrowth. Journal of Scleroderma and Related Disorders, 2021, 6, 290-298.	1.7	8
87	Tu1749 Gluten-Induced Responses in NOD/DQ8 Mice Are Influenced by Bacterial Colonization. Gastroenterology, 2014, 146, S-833.	1.3	5
88	The enemy within the gut: bacterial pathogens in celiac autoimmunity. Nature Structural and Molecular Biology, 2020, 27, 5-7.	8.2	5
89	Su1990 The Role of Microbiota in the Maternal Separation Model of Depression. Gastroenterology, 2012, 142, S-554.	1.3	3
90	Increased Bacterial Proteolytic Activity Detected Before Diagnosis of Ulcerative Colitis. Inflammatory Bowel Diseases, 2021, 27, e144-e144.	1.9	3

#	Article	IF	CITATIONS
91	Metabolism of wheat proteins by intestinal microbes: Implications for wheat related disorders. GastroenterologÃa Y HepatologÃa (English Edition), 2019, 42, 449-457.	0.1	1
92	Reply. Clinical Gastroenterology and Hepatology, 2021, 19, 1511.	4.4	1
93	A protocol for generating germ-free Heligmosomoides polygyrus bakeri larvae for gnotobiotic helminth infection studies. STAR Protocols, 2021, 2, 100946.	1.2	1
94	A Riddle, Wrapped in a Mystery, Inside an Enigma: Another Key to Wheat Sensitivity?. American Journal of Gastroenterology, 2021, 116, 943-945.	0.4	0
95	Reply. Gastroenterology, 2021, 160, 2207-2208.	1.3	0
96	Avances, descubrimientos y potencial del microbioma intestinal en gastroenterologÃa. Acta Gastroenterologica Latinoamericana, 2021, 51, .	0.1	0
97	Mecanismos patogénicos del microbioma en la enfermedad inflamatoria intestinal: rol de la actividad proteolÃŧica bacteriana. Acta Gastroenterologica Latinoamericana, 2021, 51, .	0.1	0