
Aurica Chiriac

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6440111/publications.pdf Version: 2024-02-01

Διιριζα Ομιριάς

#	Article	IF	CITATIONS
1	Nanostructured hyaluronic acid-based hydrogels encapsulating synthetic/ natural hybrid nanogels as promising wound dressings. Biochemical Engineering Journal, 2022, 179, 108341.	1.8	16
2	Development of a new polymer network system carrier of essential oils. Biomedicine and Pharmacotherapy, 2022, 149, 112919.	2,5	8
3	Comparative study on the properties of a bio-based copolymacrolactone system. Polymer Testing, 2022, 109, 107555.	2.3	6
4	Synthesis and Comparative Studies of Glucose Oxidase Immobilized on Fe3O4 Magnetic Nanoparticles Using Different Coupling Agents. Nanomaterials, 2022, 12, 2445.	1.9	5
5	New Cryogels Based on Poly(vinyl alcohol) and a Copolymacrolactone System: I-Synthesis and Characterization. Nanomaterials, 2022, 12, 2420.	1.9	6
6	Polymeric Carriers Designed for Encapsulation of Essential Oils with Biological Activity. Pharmaceutics, 2021, 13, 631.	2.0	30
7	Synthesis of Poly(Ethylene Brassylate-Co-squaric Acid) as Potential Essential Oil Carrier. Pharmaceutics, 2021, 13, 477.	2.0	16
8	Alginate enriched with phytic acid for hydrogels preparation. International Journal of Biological Macromolecules, 2021, 181, 561-571.	3.6	37
9	Alginate enriched with phytic acid for hydrogels preparation. Therapeutic applications. International Journal of Biological Macromolecules, 2021, 189, 335-345.	3.6	3
10	Bioactive Collagen Hydrolysate-Chitosan/Essential Oil Electrospun Nanofibers Designed for Medical Wound Dressings. Pharmaceutics, 2021, 13, 1939.	2.0	23
11	New Hydrogel Network Based on Alginate and a Spiroacetal Copolymer. Gels, 2021, 7, 241.	2.1	5
12	New Physical Hydrogels Based on Co-Assembling of FMOC–Amino Acids. Gels, 2021, 7, 208.	2.1	8
13	New Polymeric Particles Loaded With Sea Buckthorn Essential Oil. , 2021, , .		0
14	Chitosan Derivatives in Macromolecular Co-assembly Nanogels with Potential for Biomedical Applications. Biomacromolecules, 2020, 21, 4231-4243.	2.6	17
15	Self-Assembled Nanocarriers Based on Modified Chitosan for Biomedical Applications: Preparation and Characterization. Polymers, 2020, 12, 2593.	2.0	11
16	New Trends in Bio-Based Aerogels. Pharmaceutics, 2020, 12, 449.	2.0	103
17	Stimuli Responsive Scaffolds Based on Carboxymethyl Starch and Poly(2â€Ðimethylaminoethyl) Tj ETQq1 1 0.	784314 rgB 2.1	BT /Qyerlock
18	Trends in 3D Printing Processes for Biomedical Field: Opportunities and Challenges. Journal of Polymers and the Environment, 2020, 28, 1345-1367.	2.4	110

2

#	Article	IF	CITATIONS
19	Advancement in the Biomedical Applications of the (Nano)gel Structures Based on Particular Polysaccharides. Macromolecular Bioscience, 2019, 19, e1900187.	2.1	31
20	Multifunctional hybrid 3D network based on hyaluronic acid and a copolymer containing pendant spiroacetal moieties. International Journal of Biological Macromolecules, 2019, 125, 191-202.	3.6	6
21	New self-healing hydrogels based on reversible physical interactions and their potential applications. European Polymer Journal, 2019, 118, 176-185.	2.6	16
22	Magnetic composites based on bovine serum albumin and poly(aspartic acid). Polymer Engineering and Science, 2019, 59, 1409-1415.	1.5	1
23	Magnetic Polymeric Nanocomposites. , 2019, , 359-386.		3
24	Interpenetrated polymer network with modified chitosan in composition and self-healing properties. International Journal of Biological Macromolecules, 2019, 132, 374-384.	3.6	35
25	Nanogels Containing Polysaccharides for Bioapplications. , 2019, , 387-420.		10
26	Multifunctional BSA Scaffolds Prepared with a Novel Combination of UVâ€Crosslinking Systems. Macromolecular Chemistry and Physics, 2019, 220, 1900378.	1.1	7
27	Interpenetrating polymer network systems based on poly(dimethylaminoethyl methacrylate) and a copolymer containing pendant spiroacetal moieties. Materials Science and Engineering C, 2018, 87, 22-31.	3.8	16
28	Studies on the nanocomposites based on carboxymethyl starch-g-lactic acid-co-glycolic acid co-glycolic acid copolymer and magnetite. Journal of Thermal Analysis and Calorimetry, 2018, 131, 1867-1880.	2.0	14
29	Functional and structural analysis of a network containing a polymer structure with spiroacetal moieties and riboflavin as low molecular mass gelator. Materials Chemistry and Physics, 2018, 217, 242-253.	2.0	2
30	Investigation of the magnetic field effect upon interpolymeric complexes formation based on bovine serum albumin and poly(aspartic acid). International Journal of Biological Macromolecules, 2018, 119, 974-981.	3.6	11
31	Polymeric Nanogels with Applicability in the Biomedical Field. Recent Patents on Materials Science, 2018, 10, 97-102.	0.5	1
32	Using Cholesterol as Low Molecular Mass Gelator for a New Nanogel Preparation. Current Applied Polymer Science, 2018, 2, 37-43.	0.2	1
33	Hybrid gels by conjugation of hyaluronic acid with poly(itaconic) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 3 Biological Macromolecules, 2017, 98, 407-418.	187 Td (an 3.6	hydride-co-3, 13
34	The influence of excipients on physical and pharmaceutical properties of oral lyophilisates containing a pregabalin-acetaminophen combination. Expert Opinion on Drug Delivery, 2017, 14, 589-599.	2.4	6
35	Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Delivery, 2017, 24, 539-557.	2.5	319
36	Hyaluronic acid gels with tunable properties by conjugating with a synthetic copolymer. Biochemical Engineering Journal, 2017, 125, 135-143.	1.8	22

#	Article	IF	CITATIONS
37	Self-assembling of poly(aspartic acid) with bovine serum albumin in aqueous solutions. International Journal of Biological Macromolecules, 2017, 95, 412-420.	3.6	22
38	Aging Study of Gold Nanoparticles Functionalized with Chitosan in Aqueous Solutions. Revista De Chimie (discontinued), 2017, 68, 2385-2388.	0.2	3
39	Using Riboflavin as Low Molecular Mass Gelator for the Preparation of a New Network Structure Having Spiroacetal Moieties. Journal of Research Updates in Polymer Science, 2017, 6, 134-141.	0.3	3
40	Biodegradation of poly(lactic acid) and some of its based systems with Trichoderma viride. International Journal of Biological Macromolecules, 2016, 88, 515-526.	3.6	62
41	Multifunctional nanogels with dual temperature and pH responsiveness. International Journal of Pharmaceutics, 2016, 515, 165-175.	2.6	24
42	Investigation on thermal, rheological, dielectric and spectroscopic properties of a polymer containing pendant spiroacetal moieties. Materials Chemistry and Physics, 2016, 180, 291-300.	2.0	4
43	Tailorable polyelectrolyte protein complex based on poly(aspartic acid) and bovine serum albumin. Designed Monomers and Polymers, 2016, 19, 596-606.	0.7	9
44	Self-linked polymer gels [based on hyaluronic acid and poly (itaconic anhydride-co-3, 9-divinyl-2, 4, 8,) Tj ETQq0 () 0 rgBT /C	verlock 10 Tf
45	In situ preparation of a magnetic composite during functionalization of poly[maleic anhydride-co-3,9-divinyl-2,4,8,10-tetraoxaspiro(5.5)undecane] with erythritol. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	3
46	Upon synthesis of a polymeric matrix with pH and temperature responsiveness and antioxidant bioactivity based on poly(maleic anhydride-co-3,9-divinyl-2,4,8,10-tetraoxaspiro [5.5] undecane) derivatives. Materials Science and Engineering C, 2015, 50, 348-357.	3.8	10
47	New nanocomposite based on poly(lactic-co-glycolic acid) copolymer and magnetite. Synthesis and characterization. Composites Part B: Engineering, 2015, 72, 150-159.	5.9	13
48	Hybrid collagen-based hydrogels with embedded montmorillonite nanoparticles. Materials Science and Engineering C, 2015, 53, 212-221.	3.8	44
49	Design and synthesis of a new polymer network containing pendant spiroacetal moieties. Designed Monomers and Polymers, 2015, 18, 780-788.	0.7	15
50	Patterning poly(maleic anhydride-co-3,9-divinyl-2,4,8,10-tetraoxaspiro (5.5) undecane) copolymer bioconjugates for controlled release of drugs. International Journal of Pharmaceutics, 2015, 493, 328-340.	2.6	5
51	Static and dynamic investigations of poly(aspartic acid) and Pluronic F127 complex prepared by self-assembling in aqueous solution. Applied Surface Science, 2015, 359, 486-495.	3.1	9
52	Possibilities of quercetin insertion into poly(N,N-dimethylacrylamide-co-3, 9-divinyl-2, 4, 8,) Tj ETQq0 0 0 rgBT /O	verlock 10	Tf ₁ 50 142 Td

53	Semi-imprinting Quercetin into Poly[N,N-Dimethylacrylamide-co-3, 9-divinyl-2, 4, 8, 10-Tetraoxaspiro (5.5) Undecane] Network: Evaluation of the Antioxidant Character. Journal of Pharmaceutical Sciences, 2014, 103, 2338-2346.	1.6	3
54	Effect of pH and temperature upon self-assembling process between poly(aspartic acid) and Pluronic F127. Colloids and Surfaces B: Biointerfaces, 2014, 119, 47-54.	2.5	11

#	Article	IF	CITATIONS
55	Upon some multi-membrane hydrogels based on poly(N,N-dimethyl-acrylamide-co-3,9-divinyl-2,4,8,10-tetraoxaspiro (5.5) Undecane): preparation, characterization and in vivo tests. Journal of Materials Science: Materials in Medicine, 2014, 25, 1757-1768.	1.7	6
56	Current Concepts on Cardiovascular Stent Devices. Mini-Reviews in Medicinal Chemistry, 2014, 14, 505-536.	1.1	20
57	Novel Environmentally Friendly Copolymers Carboxymethyl Starch Grafted Poly(Lactic Acid). Journal of Polymers and the Environment, 2013, 21, 461-471.	2.4	23
58	Semi-interpenetrated polymer networks of hyaluronic acid modified with poly(aspartic acid). Journal of Polymer Research, 2013, 20, 1.	1.2	13
59	Obtaining of new magnetic nanocomposites based on modified polysaccharide. Carbohydrate Polymers, 2013, 98, 451-459.	5.1	4
60	Multilayered structure based on poly(N,N-dimethyl-acrylamide-co-3,9-divinyl-2,4,8,10-tetraoxaspiro (5.5)) Tj ETQqQ 456, 21-30.	0 0 rgBT 2.6	/Overlock 1 11
61	Characterization of the semi-interpenetrated network based on collagen and poly(N-isopropyl) Tj ETQq1 1 0.7843	14 rgBT /C 2.6	Dyerlock 10
62	Synergistic behavior of poly(aspartic acid) and Pluronic F127 in aqueous solution as studied by viscometry and dynamic light scattering. Colloids and Surfaces B: Biointerfaces, 2013, 103, 544-549.	2.5	26
63	Semiâ€interpenetrated network with improved sensitivity based on poly(<i>N</i> â€isopropylacrylamide) and poly(aspartic acid). Polymer Engineering and Science, 2013, 53, 2345-2352.	1.5	15
64	Biocompatibility, biodegradability, and drug carrier ability of hybrid collagen-based hydrogel nanocomposites. Journal of Bioactive and Compatible Polymers, 2013, 28, 540-556.	0.8	15
65	Functionalized superparamagnetic nanoparticles as versatile carriers for targeted antioxidant enzyme therapy. , 2013, , .		0
66	Indomethacin uptake into poly(2-hydroxyethyl methacrylate-co-3,9-divinyl-2,4,8,10-tetraoxaspiro) Tj ETQq0 0 0 rg Pharmaceutics, 2012, 426, 90-99.	BT /Overlo 2.6	ock 10 Tf 50 7
67	Evaluation of the Complexation Process Between Poly(Aspartic Acid) and Poly(Ethylene Glycol) Through Dynamic Rheology and Electrokinetic Potential. Journal of Macromolecular Science - Physics, 2012, 51, 288-297.	0.4	1
68	The magnetic field effect during preparation of an interpenetrated hybrid polymeric composite. Polymer Composites, 2012, 33, 1816-1823.	2.3	3
69	Cross-Linking Structural Effect of Hydrogel Based on 2-Hydroxyethyl Methacrylate. Industrial & Engineering Chemistry Research, 2012, 51, 7769-7776.	1.8	12
70	Synthesis and Thermal Analysis of a Magnetic Composite by Thermogravimetry Coupled to Fourier Transform Infrared Spectroscopy and Mass Spectrometry. Industrial & Engineering Chemistry Research, 2012, 51, 335-344.	1.8	5
	Indomethacinâ€loaded polymer nanocarriers based o n poly(2â€hydroxyethyl) Tj ETQq1 1 0.784314 rş	gBT /Overl	ock 10 Tf 50
71	vitro and <i>in vivo</i> evaluation. Journal of Biomedical Materials Research - Part B Applied Biomaterials. 2012. 100B. 1121-1133.	1.6	4
72	Evaluation of the controlled release ability from the poly(2-hydroxyethyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 67 presence of $\hat{1}^2$ -cyclodextrin. Journal of Materials Science: Materials in Medicine, 2012, 23, 1211-1223.	Td (metha 1.7	acrylate-co-3 4

#	Article	IF	CITATIONS
73	A combined NIR-CI, SEM, ESEM and X-ray nondestructive examination for the characterization of composite polymeric surfaces. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	7
74	Functionalized magnetic composites based on block copolymers poly(succinimide)-b-poly(ethylene) Tj ETQq0 0 (926-932.) rgBT /Ov 5.9	erlock 10 Tf 5 9
75	Upon the characterization of semi-synthetic hydrogels based on poly (NIPAM) inserted onto collagen sponge. Composites Part B: Engineering, 2012, 43, 1508-1515.	5.9	11
76	The Temperature Influence upon the Complexation Process between Poly(aspartic acid) and Poly(ethylene glycol). Industrial & Engineering Chemistry Research, 2011, 50, 5369-5375.	1.8	3
77	Poly(vinyl alcohol-co-lactic acid)/Hydroxyapatite Composites: Synthesis and Characterization. Journal of Polymers and the Environment, 2011, 19, 546-558.	2.4	15
78	Nano-network with dual temperature and pH responsiveness based on copolymers of 2-hydroxyethyl methacrylate with 3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5]-undecane. Journal of Nanoparticle Research, 2011, 13, 6953-6962.	0.8	12
79	Synthesis of hydrogels based on poly(NIPAM) inserted into collagen sponge. Colloids and Surfaces B: Biointerfaces, 2011, 87, 382-390.	2.5	37
80	Copolymerization of 2â€hydroxyethyl methacrylate with a comonomer with spiroacetal moiety. Journal of Polymer Science Part A, 2011, 49, 1543-1551.	2.5	12
81	Aspects concerning the temperature influence on the polymer/polymer interactions between poly(aspartic acid) and poly(ethylene glycol). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 374, 121-128.	2.3	11
82	Upon the emulsion polymerization of 2-hydroxyethyl methacrylate with 3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5]-undecane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 381, 111-117.	2.3	10
83	A study on the composites based on poly(succinimide)-b-poly(ethylene glycol) and ferrite and their magnetic response. Composites Part B: Engineering, 2011, 42, 1525-1531.	5.9	12
84	TGA/FTIR/MS study on thermal decomposition of poly(succinimide) and sodium poly(aspartate). Polymer Testing, 2011, 30, 397-407.	2.3	56
85	Biodegradable copolymers with succinimide and lactic acid units. Part I. Synthesis possibilities. Polimery, 2011, 56, 204-210.	0.4	3
86	Effect of emulsion polymerization and magnetic field on the adsorption of albumin on poly(methyl) Tj ETQq0 0 0 2443-2452.	rgBT /Ove 1.7	erlock 10 Tf 5 7
87	An inÂvitro release study of indomethacin from nanoparticles based on methyl methacrylate/glycidyl methacrylate copolymers. Journal of Materials Science: Materials in Medicine, 2010, 21, 3129-3140.	1.7	10
88	Upon a magnetic composite preparation based on magnetite and poly(succinimide)-b-poly(ethylene) Tj ETQq0 0	0 rgBT /O	verjock 10 Tf
89	Study of a binary interpenetrated polymeric complex by correlation of rheological parameters with zeta potential and conductivity. Colloids and Surfaces B: Biointerfaces, 2010, 76, 70-75.	2.5	13

90	Poly(ethylene glycol) functionalized by polycondensing procedure with poly(succinimide). Polimery, 2010, 55, 641-645.	0.4	8
----	---	-----	---

#	Article	IF	CITATIONS
91	Sol Gel Method Performed for Biomedical Products Implementation. Mini-Reviews in Medicinal Chemistry, 2010, 10, 990-1013.	1.1	22
92	Contribution to polymer nanoparticles analysis by laser light scattering. Polymer Testing, 2009, 28, 886-890.	2.3	12
93	An analysis of the complexation between poly(aspartic acid) and poly(ethylene glycol). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 348, 254-262.	2.3	21
94	Polymerization in magnetic field: XVIII. Influence of surfactant nature on the synthesis and thermal properties of poly(methyl methacrylate) and poly[(methyl methacrylate)â€ <i>co</i> â€(epoxypropyl) Tj ETQq0 0	0 ng&T /O	ve dø ck 10 Tf
95	Magnetic composite based on vinylic template. Journal of Applied Polymer Science, 2008, 108, 3690-3695.	1.3	3
96	Polymerization in a magnetic field, part 17: Styrene copolymerization with 2,3-epoxypropyl methacrylate. Journal of Applied Polymer Science, 2007, 104, 3029-3035.	1.3	10
97	In situ monitoring the sol–gel transition for polyacrylamide gel. Rheologica Acta, 2007, 46, 595-600.	1.1	15
98	Possibilities of collagen adsorption on some polymeric matrices based on styrene copolymers. Journal of Applied Polymer Science, 2006, 100, 3554-3561.	1.3	3
99	Magnetic composites obtainment based on styrene polymers. Journal of Applied Polymer Science, 2006, 100, 4133-4141.	1.3	6
100	Polymerization in a magnetic field. XV Some azo-initiators behavior in a high magnetic field. Journal of Applied Polymer Science, 2005, 98, 1025-1031.	1.3	10
101	Polymerization in magnetic field. XVI. Kinetic aspects regarding methyl methacrylate polymerization in high magnetic field. Journal of Polymer Science Part A, 2004, 42, 5678-5686.	2.5	18
102	Polymerization in a magnetic field. 14. Possibilities to improve field effect during methyl acrylate polymerization. Journal of Applied Polymer Science, 2004, 92, 1031-1036.	1.3	12
103	Some properties in solution of poly(acrylamide) synthesized in a magnetic field. Polymer Testing, 2001, 20, 585-589.	2.3	5
104	The improvement of adhesive character of an acrylovinylic macromolecular compound. Polymer Testing, 2001, 20, 873-877.	2.3	1
105	Polymerisation in a magnetic field. Polymer Testing, 2000, 19, 405-413.	2.3	12
106	Magnetic field polymerisation. Progress in Polymer Science, 2000, 25, 219-258.	11.8	51
107	Acrylovinylic macromolecular compounds with adhesive properties. Polymer Testing, 1999, 18, 415-427.	2.3	3
108	Aspects regarding the grafting of some lignosulfonates with acrylamide under a magnetic field. Angewandte Makromolekulare Chemie, 1999, 273, 75-85.	0.3	4

#	Article	IF	CITATIONS
109	Some properties of vinyl acetate/methyl methacrylate/acrylamide copolymer synthesized in a magnetic field. Polymer Testing, 1997, 16, 185-192.	2.3	7
110	An investigation of the grafting of cellulose powder with acrylamide under a magnetic field. Angewandte Makromolekulare Chemie, 1997, 246, 1-9.	0.3	15
111	Polymerization in a magnetic field. X. Solvent effect in poly(methyl methacrylate) synthesis. Journal of Polymer Science Part A, 1996, 34, 567-573.	2.5	19
112	Aspects regarding the characteristics of some acrylic and methacrylic polyesters synthesized in a magnetic field. Polymer Testing, 1996, 15, 537-548.	2.3	7
113	Polymerization in a magnetic field: 1. Influence of esteric chain length on the synthesis of various poly(methacrylate)s. Polymer, 1993, 34, 3917-3920.	1.8	18
114	Influence of a magnetic field on radicalic polymerization of butyl methacrylate. Colloid and Polymer Science, 1992, 270, 753-758.	1.0	14
115	High conversion synthesis of poly(methyl methacrylate). Polymer Bulletin, 1991, 27, 31-36.	1.7	17
116	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1989, 10, 601-606.	1.1	11
117	Nanocomposites Based on Montmorillonite/Acrylic Copolymer for Aqueous Coating of Soft Surfaces. Solid State Phenomena, 0, 151, 129-134.	0.3	4