

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6439943/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intragap State Engineering for Tunable Single-Photon Upconversion Photoluminescence of Lead Halide Perovskite. Journal of Physical Chemistry C, 2022, 126, 2447-2453.	3.1	3
2	Spacer Engineering of Thiophene-Based Two-Dimensional/Three-Dimensional Hybrid Perovskites for Stable and Efficient Solar Cells. Journal of Physical Chemistry C, 2022, 126, 3351-3358.	3.1	9
3	Lewis Base Plays a Double-Edged-Sword Role in Trap State Engineering of Perovskite Polycrystals. Journal of Physical Chemistry Letters, 2022, 13, 1571-1577.	4.6	11
4	Polarization-Induced Trap States in Perovskite Solar Cells Revealed by Circuit-Switched Transient Photoelectric Technique. Journal of Physical Chemistry C, 2022, 126, 3696-3704.	3.1	7
5	Silicon Dioxide Nanoparticles Increase the Incidence Depth of Short-Wavelength Light in Active Layer for High-Performance Perovskite Solar Cells. Journal of Physical Chemistry C, 2022, 126, 7400-7409.	3.1	1
6	Influence of the MACI additive on grain boundaries, trap-state properties, and charge dynamics in perovskite solar cells. Physical Chemistry Chemical Physics, 2021, 23, 6162-6170.	2.8	18
7	Simultaneous Transport Promotion and Recombination Suppression in Perovskite Solar Cells by Defect Passivation with Li-Doped Graphitic Carbon Nitride. Journal of Physical Chemistry C, 2021, 125, 5525-5533.	3.1	7
8	Lewis Base-Mediated Perovskite Crystallization as Revealed by In Situ, Real-Time Optical Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 5357-5362.	4.6	5
9	Effect of energetic distribution of trap states on fill factor in perovskite solar cells. Journal of Power Sources, 2020, 479, 229077.	7.8	10
10	Solution-based green amplified spontaneous emission from colloidal perovskite nanocrystals exhibiting high stability. Applied Physics Letters, 2019, 114, .	3.3	18
11	Stable, Ultralow Threshold Amplified Spontaneous Emission from CsPbBr ₃ Nanoparticles Exhibiting Trion Gain. Nano Letters, 2018, 18, 4976-4984.	9.1	103
12	The Influence of Morphology and PbI ₂ on the Intrinsic Trap State Distribution in Perovskite Films Determined by Using Temperatureâ€Dependent Fluorescence Spectroscopy. ChemPhysChem, 2017, 18, 310-317.	2.1	7
13	Multipleâ€Trapping Model for the Charge Recombination Dynamics in Mesoporousâ€&tructured Perovskite Solar Cells. ChemSusChem, 2017, 10, 4872-4878.	6.8	11
14	Hierarchical Multicomponent Nanoheterostructures via Facet-to-Facet Attachment of Anisotropic Semiconductor Nanoparticles. Chemistry of Materials, 2017, 29, 9075-9083.	6.7	3
15	Delayed Exciton Formation Involving Energetically Shallow Trap States in Colloidal CsPbBr ₃ Quantum Dots. Journal of Physical Chemistry C, 2017, 121, 28498-28505.	3.1	26
16	The Influence of Structural Configuration on Charge Accumulation, Transport, Recombination, and Hysteresis in Perovskite Solar Cells. Energy Technology, 2017, 5, 442-451.	3.8	15
17	Mechanism of biphasic charge recombination and accumulation in TiO ₂ mesoporous structured perovskite solar cells. Physical Chemistry Chemical Physics, 2016, 18, 12128-12134.	2.8	28
18	Efficient promotion of charge separation and suppression of charge recombination by blending PCBM and its dimer as electron transport layer in inverted perovskite solar cells. RSC Advances, 2016, 6, 112512-112519.	3.6	15

YI WANG

#	Article	IF	CITATIONS
19	The influence of morphology on charge transport/recombination dynamics in planar perovskite solar cells. Chemical Physics Letters, 2016, 662, 257-262.	2.6	17
20	Correlation between Energy and Spatial Distribution of Intragap Trap States in the TiO ₂ Photoanode of Dye‣ensitized Solar Cells. ChemPhysChem, 2015, 16, 2253-2259.	2.1	28
21	The influence of hierarchical TiO2 microspheres on the trap state distribution and charge transport/recombination dynamics in quantum dot sensitized solar cells. RSC Advances, 2015, 5, 32110-32117.	3.6	5
22	New insights into electrolyte-component biased and transfer- and transport-limited charge recombination in dye-sensitized solar cells. RSC Advances, 2015, 5, 84959-84966.	3.6	5
23	Trap-limited charge recombination in intrinsic perovskite film and meso-superstructured perovskite solar cells and the passivation effect of the hole-transport material on trap states. Physical Chemistry Chemical Physics, 2015, 17, 29501-29506.	2.8	36
24	Application of a Simplified Diode Characteristic Model in Current-Voltage Curve Fitting and Evaluation of Photoelectric Parameters within Dye-Sensitized Solar Cell. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31, 1113-1117.	4.9	0
25	Density of state determination of two types of intra-gap traps in dye-sensitized solar cells and its influence on device performance. Physical Chemistry Chemical Physics, 2014, 16, 11626-11632.	2.8	26
26	Dual-functional hetero-structured TiO2 nanotrees composed of rutile trunks and anatase branches for improved performance of quantum dot-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 17798.	2.8	34
27	Hierarchical TiO ₂ microspheres comprised of anatase nanospindles for improved electron transport in dye-sensitized solar cells. Nanoscale, 2013, 5, 324-330.	5.6	68