Maaouia Souissi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6439912/publications.pdf

Version: 2024-02-01

1040056 1199594 14 246 9 12 citations h-index g-index papers 14 14 14 350 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Crystal Chemistry and Electronic Properties of the Al-Rich Compounds, Al2Cu, $i\%$ -Al7Cu2Fe and i -Al13Fe4 with Cu Solution. Metals, 2022, 12, 329.	2.3	7
2	Direct observation and modeling of growth-induced stacking fault in chromium-rich Î ³ -M23C6 carbides. Scripta Materialia, 2020, 178, 290-294.	5.2	11
3	Evaluating the phase stability of binary titanium alloy Ti-X (X = Mo, Nb, Al, and Zr) using first-principles calculations and a Debye model. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2020, 71, 102207.	1.6	10
4	Creep lifetime and microstructure evolution in boron-added 9Crâ€"1Mo heat-resistant steel. Materials Science & Description (2019, 760, 267-276.	5.6	15
5	Responses to comments on "Ni nanoparticle-decorated reduced graphene oxide for non-enzymatic glucose sensing: An experimental and modeling study [Electrochim. Acta 240 (2017) 388–398]― Electrochimica Acta, 2019, 300, 145-149.	5. 2	1
6	Gelatin methacryloyl hydrogel for glucose biosensing using Ni nanoparticles-reduced graphene oxide: An experimental and modeling study. Electrochimica Acta, 2018, 261, 275-283.	5.2	36
7	Creep Property of Boron Added 9Cr Heat Resistant Steels after Welding. Materials Science Forum, 2018, 941, 340-345.	0.3	0
8	Effect of mixed partial occupation of metal sites on the phase stability of \hat{l}^3 -Cr23 \hat{a} °xFe x C6 (x \hat{a} = \hat{a} = \hat{a} 0 \hat{a} = \hat{a} 00°xFe x C6 (x \hat{a} = \hat{a} = \hat{a} 00°xFe x C6 (x \hat{a} = \hat{a} = \hat{a} 0°xFe x C6 (x \hat{a} = \hat{a} = \hat{a} 0°xFe x C6 (x \hat{a} = \hat{a} = \hat{a} 0°xFe x C6 (x \hat{a} = \hat{a} = \hat{a} 0°xFe x C6 (x \hat{a} = \hat{a} = \hat{a} 0°xFe x C6 (x \hat{a} = \hat{a} = \hat{a} 0°xFe x C6 (x \hat{a} = \hat{a} = \hat{a} 0°xFe x C6 (x \hat	3.3	14
9	Ni nanoparticle-decorated reduced graphene oxide for non-enzymatic glucose sensing: An experimental and modeling study. Electrochimica Acta, 2017, 240, 388-398.	5.2	50
10	Ab initio characterization of B, C, N, and O in bcc iron: Solution and migration energies and elastic strain fields. Computational Materials Science, 2016, 124, 249-258.	3.0	34
11	Elastic Properties of Fe–C and Fe–N Martensites. ISIJ International, 2015, 55, 1512-1521.	1.4	44
12	An atomistic level description of guest molecule effect on the formation of hydrate crystal nuclei by ab initio calculations. Journal of Structural Chemistry, 2012, 53, 619-626.	1.0	4
13	Theoretical modelling of the phase diagrams of clathrate hydrates for hydrogen storage applications. Molecular Simulation, 2012, 38, 773-780.	2.0	20
14	Theoretical Evaluation of Anisotropic Distortion Associated with Point Defects in Ordered Compounds. Defect and Diffusion Forum, 0, 363, 101-105.	0.4	0