David J Bottjer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6439276/publications.pdf

Version: 2024-02-01

94433 64796 6,803 74 37 79 citations h-index g-index papers 81 81 81 4110 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A biased fossil record can preserve reliable phylogenetic signal. Paleobiology, 2022, 48, 480-495.	2.0	4
2	Resilience of infaunal ecosystems during the Early Triassic greenhouse Earth. Science Advances, 2022, 8, .	10.3	14
3	The Ordovician diversification of sea urchins: systematics of the Bothriocidaroida (Echinodermata:) Tj ETQq1 1	1 0.784314 r 1.5	gBT /Overlock
4	Comparative taphonomy and phylogenetic signal of phosphatized Weng'an and Kuanchuanpu Biotas. Precambrian Research, 2020, 349, 105408.	2.7	6
5	Unusual shallow marine matground-adapted benthic biofacies from the Lower Triassic of the northern Paleotethys: Implications for biotic recovery following the end-Permian mass extinction. Earth-Science Reviews, 2019, 189, 194-219.	9.1	24
6	The Ediacaran-Cambrian rise of siliceous sponges and development of modern oceanic ecosystems. Precambrian Research, 2019, 333, 105438.	2.7	30
7	Biotic impacts of temperature before, during, and after the end-Permian extinction: A multi-metric and multi-scale approach to modeling extinction and recovery dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 513, 86-99.	2.3	11
8	Evolutionary models in the Early Triassic marine realm. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 513, 65-85.	2.3	9
9	Additional records of ichnogenus Rhizocorallium from the Lower and Middle Triassic, South China: Implications for biotic recovery after the end-Permian mass extinction. Bulletin of the Geological Society of America, 2018, 130, 1197-1215.	3.3	21
10	Early Cambrian animal diapause embryos revealed by X-ray tomography. Geology, 2018, 46, 387-390.	4.4	15
11	Microbial mats in the terrestrial Lower Triassic of North China and implications for the Permian–Triassic mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 474, 214-231.	2.3	34
12	Duration of and decoupling between carbon isotope excursions during the end-Triassic mass extinction and Central Atlantic Magmatic Province emplacement. Earth and Planetary Science Letters, 2017, 473, 227-236.	4.4	37
13	Geobiology and palaeogenomics. Earth-Science Reviews, 2017, 164, 182-192.	9.1	6
14	Paleogenomics of echinoids reveals an ancient origin for the double-negative specification of micromeres in sea urchins. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5870-5877.	7.1	26
15	Sudden and extreme hyperthermals, low-oxygen, and sediment influx drove community phase shifts following the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 451, 183-196.	2.3	24
16	Quantitative analysis of the ecological dominance of benthic disaster taxa in the aftermath of the end-Permian mass extinction. Paleobiology, 2016, 42, 380-393.	2.0	32
17	Meroblastic cleavage identifies some Ediacaran Doushantuo (China) embryo-like fossils as metazoans. Geology, 2016, 44, 735-738.	4.4	30
18	Mercury anomalies and the timing of biotic recovery following the end-Triassic mass extinction. Nature Communications, 2016, 7, 11147.	12.8	187

#	Article	IF	Citations
19	Marine Ecological State-Shifts Following the Triassic–Jurassic Mass Extinction. The Paleontological Society Papers, 2015, 21, 121-136.	0.6	3
20	Paleogeographic trends in Late Triassic reef ecology from northeastern Panthalassa. Earth-Science Reviews, 2015, 142, 18-37.	9.1	34
21	Andean sponges reveal long-term benthic ecosystem shifts following the end-Triassic mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 420, 193-209.	2.3	43
22	Sponge grade body fossil with cellular resolution dating 60 Myr before the Cambrian. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1453-60.	7.1	178
23	Rapid carbonate depositional changes following the Permian-Triassic mass extinction: Sedimentary evidence from South China. Journal of Earth Science (Wuhan, China), 2015, 26, 166-180.	3.2	20
24	Strontium isotope stratigraphy of the Gabbs Formation (Nevada): implications for global Norian–Rhaetian correlations and faunal turnover. Lethaia, 2014, 47, 500-511.	1.4	19
25	Diversity and species abundance patterns of the Early Cambrian (Series 2, Stage 3) Chengjiang Biota from China. Paleobiology, 2014, 40, 50-69.	2.0	58
26	The importance of oxygen for the disparate recovery patterns of the benthic macrofauna in the Early Triassic. Earth-Science Reviews, 2014, 137, 65-84.	9.1	54
27	Reconstruction of Early Triassic ocean redox conditions based on framboidal pyrite from the Nanpanjiang Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 412, 68-79.	2.3	85
28	High temperature and low oxygen perturbations drive contrasting benthic recovery dynamics following the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 399, 98-113.	2.3	30
29	Global review of the Permian–Triassic mass extinction and subsequent recovery: Part I. Earth-Science Reviews, 2014, 137, 1-5.	9.1	23
30	Depth transect of an Upper Triassic (Rhaetian) reef from Gosau, Austria: Microfacies and community ecology. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 376, 1-21.	2.3	14
31	Platy coral patch reefs from eastern Panthalassa (Nevada, USA): Unique reef construction in the Late Triassic. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 313-314, 41-58.	2.3	24
32	Life in the Early Triassic Ocean. Science, 2012, 338, 336-337.	12.6	23
33	Recognising ocean acidification in deep time: An evaluation of the evidence for acidification across the Triassic-Jurassic boundary. Earth-Science Reviews, 2012, 113, 72-93.	9.1	151
34	Origin of Lower Triassic microbialites in mixed carbonate-siliciclastic successions: Ichnology, applied stratigraphy, and the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 300, 158-178.	2.3	69
35	The cambrian substrate revolution and early evolution of the phyla. Journal of Earth Science (Wuhan,) Tj ETQq $1\ 1$	0,784314	FrgBT /Overl
36	Comparison of changes in ocean chemistry in the early triassic with trends in diversity and ecology. Journal of Earth Science (Wuhan, China), 2010, 21, 147-150.	3.2	4

#	Article	IF	CITATIONS
37	Microbial framework in Upper Triassic (Carnian) patch reefs from Williston Lake, British Columbia, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 297, 609-620.	2.3	23
38	Complex embryos displaying bilaterian characters from Precambrian Doushantuo phosphate deposits, Weng'an, Guizhou, China. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19056-19060.	7.1	61
39	The paleoenvironmental distribution of Phanerozoic wrinkle structures. Earth-Science Reviews, 2009, 96, 181-195.	9.1	65
40	Development of Lower Triassic Wrinkle Structures: Implications for the Search for Life on Other Planets. Astrobiology, 2009, 9, 895-906.	3.0	23
41	The effects of mid-Phanerozoic environmental stress on bryozoan diversity, paleoecology, and paleogeography. Global and Planetary Change, 2009, 65, 146-154.	3.5	8
42	Behavior of lophophorates during the end-Permian mass extinction and recovery. Journal of Asian Earth Sciences, 2009, 36, 413-419.	2.3	10
43	Phanerozoic Trends in the Global Diversity of Marine Invertebrates. Science, 2008, 321, 97-100.	12.6	643
44	Understanding mechanisms for the end-Permian mass extinction and the protracted Early Triassic aftermath and recovery. GSA Today, 2008, 18, 4.	2.0	894
45	Prolonged Permian–Triassic ecological crisis recorded by molluscan dominance in Late Permian offshore assemblages. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12971-12975.	7.1	41
46	Raman spectra of a Lower Cambrian ctenophore embryo from southwestern Shaanxi, China. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6289-6292.	7.1	95
47	Elevated atmospheric CO2 and the delayed biotic recovery from the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252, 164-175.	2.3	76
48	Calcium carbonate seafloor precipitates from the outer shelf to slope facies of the Lower Triassic (Smithian-Spathian) Union Wash Formation, California, USA: Sedimentology and palaeobiologic significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252, 281-290.	2.3	50
49	When bivalves took over the world. Paleobiology, 2007, 33, 397-413.	2.0	70
50	When bivalves took over the world. Paleobiology, 2007, 33, 397-413.	2.0	33
51	Paleogenomics of Echinoderms. Science, 2006, 314, 956-960.	12.6	117
52	A global marine sedimentary response to the end-Permian mass extinction: Examples from southern Turkey and the western United States. Earth-Science Reviews, 2006, 78, 193-206.	9.1	171
53	Phosphatized Polar Lobe-Forming Embryos from the Precambrian of Southwest China. Science, 2006, 312, 1644-1646.	12.6	89
54	Chapter 12 Environmental trends of Early Triassic biofabrics: implications for understanding the aftermath of the end-Permian mass extinction. Developments in Palaeontology and Stratigraphy, 2005, , 313-332.	0.1	7

#	Article	IF	CITATIONS
55	Chapter 11 fossil preservation during the aftermath of the end-permian mass extinction: taphonomic processes and palaeoecological signals. Developments in Palaeontology and Stratigraphy, 2005, , 299-311.	0.1	6
56	Precambrian animal life: Taphonomy of phosphatized metazoan embryos from southwest China. Lethaia, 2005, 38, 101-109.	1.4	31
57	Restructuring in benthic level-bottom shallow marine communities due to prolonged environmental stress following the end-Permian mass extinction. Comptes Rendus - Palevol, 2005, 4, 583-591.	0.2	52
58	The reorganization of reef communities following the end-Permian mass extinction. Comptes Rendus - Palevol, 2005, 4, 553-568.	0.2	46
59	Unique microgastropod biofacies in the Early Triassic: Indicator of long-term biotic stress and the pattern of biotic recovery after the end-Permian mass extinction. Comptes Rendus - Palevol, 2005, 4, 543-552.	0.2	45
60	The unusual sedimentary rock record of the Early Triassic: A case study from the southwestern United States. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 222, 33-52.	2.3	105
61	Proliferation of Early Triassic wrinkle structures: Implications for environmental stress following the end-Permian mass extinction. Geology, 2004, 32, 461.	4.4	147
62	Small Bilaterian Fossils from 40 to 55 Million Years Before the Cambrian. Science, 2004, 305, 218-222.	12.6	259
63	Late Early Triassic microbial reefs of the western United States: a description and model for their deposition in the aftermath of the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 211, 127-137.	2.3	92
64	Precambrian Animal Life: Probable Developmental and Adult Cnidarian Forms from Southwest China. Developmental Biology, 2002, 248, 182-196.	2.0	150
65	Evolutionary paleoecology of the earliest echinoderms: Helicoplacoids and the Cambrian substrate revolution. Geology, 2000, 28, 839.	4.4	53
66	Lower Triassic large sea-floor carbonate cements: Their origin and a mechanism for the prolonged biotic recovery from the end-Permian mass extinction. Geology, 1999, 27, 645.	4.4	193
67	Restriction of a Late Neoproterozoic Biotope: Suspect-Microbial Structures and Trace Fossils at the Vendian-Cambrian Transition. Palaios, 1999, 14, 73.	1.3	183
68	Wrinkle structures: Microbially mediated sedimentary structures common in subtidal siliciclastic settings at the Proterozoic-Phanerozoic transition. Geology, 1997, 25, 1047.	4.4	248
69	Phanerozoic non-actualisticpaleoecology. Geobios, 1997, 30, 885-893.	1.4	16
70	Aftermath of the Permian-Triassic mass extinction event: Paleoecology of Lower Triassic carbonates in the western USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 1995, 116, 1-39.	2.3	267
71	Early Triassic stromatolites as post-mass extinction disaster forms. Geology, 1992, 20, 883.	4.4	291
72	Paleoenvironmental Patterns in the Evolution of Post-Paleozoic Benthic Marine Invertebrates. Palaios, 1988, 3, 540.	1.3	195

#	Article	IF	CITATIONS
73	Trace-fossil model for reconstruction of paleo-oxygenation in bottom waters. Geology, 1986, 14, 3.	4.4	333
74	Phanerozoic development of tiering in soft substrata suspension-feeding communities. Paleobiology, 1986, 12, 400-420.	2.0	225