Montserrat Diguez

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6439091/montserrat-dieguez-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

172
papers6,917
citations43
h-index76
g-index248
ext. papers7,555
ext. citations8.3
avg, IF6
L-index

#	Paper	IF	Citations
172	Asymmetric hydrogenation in industry. <i>Advances in Catalysis</i> , 2021 , 341-383	2.4	O
171	Proofreading experimentally assigned stereochemistry through Q2MM predictions in Pd-catalyzed allylic aminations. <i>Nature Communications</i> , 2021 , 12, 6719	17.4	1
170	Evolution in the metal-catalyzed asymmetric hydroformylation of 1,1?-disubstituted alkenes. <i>Advances in Catalysis</i> , 2021 , 69, 181-215	2.4	
169	Density Functional Theory-Inspired Design of Ir/P,S-Catalysts for Asymmetric Hydrogenation of Olefins. <i>Organometallics</i> , 2021 , 40, 3424-3435	3.8	0
168	Indene Derived Phosphorus-Thioether Ligands for the Ir-Catalyzed Asymmetric Hydrogenation of Olefins with Diverse Substitution Patterns and Different Functional Groups. <i>Advanced Synthesis and Catalysis</i> , 2021 , 363, 4561	5.6	2
167	Recent Advances in Enantioselective Pd-Catalyzed Allylic Substitution: From Design to Applications. <i>Chemical Reviews</i> , 2021 , 121, 4373-4505	68.1	78
166	Self-Adaptable Tropos Catalysts. <i>Accounts of Chemical Research</i> , 2021 , 54, 3252-3263	24.3	2
165	Evolution in heterodonor P-N, P-S and P-O chiral ligands for preparing efficient catalysts for asymmetric catalysis. From design to applications. <i>Coordination Chemistry Reviews</i> , 2021 , 446, 214120	23.2	8
164	Iridium-Catalyzed Asymmetric Hydrogenation. <i>Topics in Organometallic Chemistry</i> , 2020 , 153-205	0.6	1
163	Rh-Catalyzed Asymmetric Hydroaminomethylation of Bubstituted Acrylamides: Application in the Synthesis of RWAY. <i>Organic Letters</i> , 2020 , 22, 9036-9040	6.2	7
162	P-Stereogenic -Phosphine-Phosphite Ligands for the Rh-Catalyzed Hydrogenation of Olefins. <i>Journal of Organic Chemistry</i> , 2020 , 85, 4730-4739	4.2	6
161	Ir B iaryl phosphite®xazoline catalyst libraries: a breakthrough in the asymmetric hydrogenation of challenging olefins. <i>Catalysis Science and Technology</i> , 2020 , 10, 613-624	5.5	13
160	Evolution of phosphorus-thioether ligands for asymmetric catalysis. <i>Chemical Communications</i> , 2020 , 56, 10795-10808	5.8	11
159	Effect of Ligand Chelation and Sacrificial Oxidant on the Integrity of Triazole-Based Carbene Iridium Water Oxidation Catalysts. <i>Inorganic Chemistry</i> , 2020 , 59, 12337-12347	5.1	9
158	Giving a Second Chance to Ir/Sulfoximine-Based Catalysts for the Asymmetric Hydrogenation of Olefins Containing Poorly Coordinative Groups. <i>Journal of Organic Chemistry</i> , 2019 , 84, 8259-8266	4.2	12
157	An Improved Class of Phosphite-Oxazoline Ligands for Pd-Catalyzed Allylic Substitution Reactions. <i>ACS Catalysis</i> , 2019 , 9, 6033-6048	13.1	7
156	Phosphite-thioether/selenoether Ligands from Carbohydrates: An Easily Accessible Ligand Library for the Asymmetric Hydrogenation of Functionalized and Unfunctionalized Olefins. <i>ChemCatChem</i> , 2019 , 11, 2142-2168	5.2	18

A readily accessible and modular carbohydrate-derived thioether/selenoether-phosphite ligand library for Pd-catalyzed asymmetric allylic substitutions. <i>Dalton Transactions</i> , 2019 , 48, 12632-12643	4.3	8
Ir/ThioetherCarbene, Phosphinite, and Phosphite Complexes for Asymmetric Hydrogenation. A Case for Comparison. <i>Organometallics</i> , 2019 , 38, 4193-4205	3.8	9
Extending the Substrate Scope in the Hydrogenation of Unfunctionalized Tetrasubstituted Olefins with Ir-P Stereogenic Aminophosphine-Oxazoline Catalysts. <i>Organic Letters</i> , 2019 , 21, 807-811	6.2	27
Synthesis, Application and Kinetic Studies of Chiral Phosphite-Oxazoline Palladium Complexes as Active and Selective Catalysts in Intermolecular Heck Reactions. <i>Advanced Synthesis and Catalysis</i> , 2018 , 360, 1650-1664	5.6	10
Computationally Guided Design of a Readily Assembled Phosphite Thioether Ligand for a Broad Range of Pd-Catalyzed Asymmetric Allylic Substitutions. <i>ACS Catalysis</i> , 2018 , 8, 3587-3601	13.1	18
Pyrrolidine-Based P,O Ligands from Carbohydrates: Easily Accessible and Modular Ligands for the Ir-Catalyzed Asymmetric Hydrogenation of Minimally Functionalized Olefins. <i>ChemCatChem</i> , 2018 , 10, 5414-5424	5.2	9
Asymmetric Hydrogenation of Disubstituted, Trisubstituted, and Tetrasubstituted Minimally Functionalized Olefins and Cyclic	13.1	24
Amino-P Ligands from Iminosugars: New Readily Available and Modular Ligands for Enantioselective Pd-Catalyzed Allylic Substitutions. <i>Organometallics</i> , 2018 , 37, 1682-1694	3.8	10
Enantioselective Synthesis of Sterically Hindered Tertiary Aryl Oxindoles via Palladium-Catalyzed Decarboxylative Protonation. An Experimental and Theoretical Mechanistic Investigation. <i>Advanced Synthesis and Catalysis</i> , 2018 , 360, 3124-3137	5.6	8
Triazolylidene Iridium Complexes for Highly Efficient and Versatile Transfer Hydrogenation of C?O, C?N, and C?C Bonds and for Acceptorless Alcohol Oxidation. <i>Inorganic Chemistry</i> , 2017 , 56, 11282-11298	8 ^{5.1}	44
Enantioselective Synthesis of 6,6-Disubstituted Pentafulvenes Containing a Chiral Pendant Hydroxy Group. <i>Chemistry - A European Journal</i> , 2017 , 23, 17195-17198	4.8	6
Alternatives to Phosphinooxazoline (t-BuPHOX) Ligands in the Metal-Catalyzed Hydrogenation of Minimally Functionalized Olefins and Cyclic 旺namides. <i>Advanced Synthesis and Catalysis</i> , 2017 , 359, 2801-2814	5.6	24
Phosphite-Thiother Ligands Derived from Carbohydrates allow the Enantioswitchable Hydrogenation of Cyclic 旺namides by using either Rh or Ir Catalysts. <i>Chemistry - A European Journal</i> , 2017 , 23, 813-822	4.8	16
Chiral ferrocene-based P,S ligands for Ir-catalyzed hydrogenation of minimally functionalized olefins. Scope and limitations. <i>Tetrahedron</i> , 2016 , 72, 2623-2631	2.4	25
Designing new readily available sugar-based ligands for asymmetric transfer hydrogenation of ketones. In the quest to expand the substrate scope. <i>Tetrahedron Letters</i> , 2016 , 57, 1301-1308	2	13
Conformational Preferences of a Tropos Biphenyl Phosphinooxazoline Ligand with Wide Substrate Scope. <i>ACS Catalysis</i> , 2016 , 6, 1701-1712	13.1	19
Extending the Substrate Scope for the Asymmetric Iridium-Catalyzed Hydrogenation of Minimally Functionalized Olefins by Using Biaryl Phosphite-Based Modular Ligand Libraries. <i>Chemical Record</i> , 2016 , 16, 1578-90	6.6	21
PHOX-Based Phosphite-Oxazoline Ligands for the Enantioselective Ir-Catalyzed Hydrogenation of Cyclic 眶namides. <i>ACS Catalysis</i> , 2016 , 6, 5186-5190	13.1	26
	Ir/ThioethertGarbene, Phosphinite, and Phosphite Complexes for Asymmetric Hydrogenation. A Case for Comparison. <i>Organometallics</i> , 2019, 38, 4193-4205 Extending the Substrate Scope in the Hydrogenation of Unfunctionalized Tetrasubstituted Olefins with Ir-P Stereogenic Aminophosphine-Oxazoline Catalysts. <i>Organic Letters</i> , 2019, 21, 807-811 Synthesis, Application and Kinetic Studies of Chiral Phosphite-Oxazoline Palladium Complexes as Active and Selective Catalysts in Intermolecular Heck Reactions. <i>Advanced Synthesis and Catalysis</i> , 2018, 360, 1650-1664 Computationally Guided Design of a Readily Assembled Phosphite-Oxazoline High for a Broad Range of Pd-Catalyzed Asymmetric Allylic Substitutions. <i>ACS Catalysis</i> , 2018, 8, 587-3601 Pyrrolidine-Based P.O. Ligands from Carrbohydrates: Easily Accessible and Modular Ligands for the Ir-Catalyzed Asymmetric Hydrogenation of Minimally Functionalized Olefins. <i>ChemCatChem</i> , 2018, 10, 5414-5424 Asymmetric Hydrogenation of Disubstituted, Trisubstituted, and Tetrasubstituted Minimally Functionalized Olefins and Cyclic Enamides with Easily Accessible IrB,Oxazoline Catalysts. <i>ACS Catalysis</i> , 2018, 8, 10316-10320 Amino-P Ligands from Iminosugars: New Readily Available and Modular Ligands for Enantioselective Pd-Catalyzed Allylic Substitutions. <i>Organometallics</i> , 2018, 37, 1682-1694 Enantioselective Synthesis of Sterically Hindered Tertiary Paryl Oxindoles via Palladium-Catalyzed Decarboxylative Protonation. An Experimental and Theoretical Mechanistic Investigation. <i>Advanced Synthesis and Catalysis</i> , 2018, 360, 3124-3137 Triazolylidene Iridium Complexes for Highly Efficient and Versatile Transfer Hydrogenation of CrO, C?N, and C?C Bonds and for Acceptorless Alcohol Oxidation. <i>Inorganic Chemistry</i> , 2017, 56, 11282-1129. Enantioselective Synthesis of 6,6-Disubstituted Pentafulvenes Containing a Chiral Pendant Hydroxy Group. <i>Chemistry - A European Journal</i> , 2017, 23, 17195-17198 Alternatives to Phosphinooxazoline (t-BuPHOX) Ligands in the Metal-Catalyzed Hydrogenati	Ir/ThioethertEarbene, Bhosphinite, and Bhosphite Complexes for Asymmetric Hydrogenation. A Case for Comparison. Organometallics, 2019, 38, 4193-4205 Extending the Substrate Scope in the Hydrogenation of Unfunctionalized Tetrasubstituted Olefins with Ir-P Stereogenic Aminophosphine-Oxazoline Catalysts. Organic Letters, 2019, 21, 807-811 Synthesis, Application and Kinetic Studies of Chiral Phosphite-Oxazoline Palladium Complexes as Active and Selective Catalysts in Intermolecular Heck Reactions. Advanced Synthesis and Catalysis, 2018, 360, 1650-1664 Computationally Guided Design of a Readily Assembled Phosphite-Bhioether Ligand for a Broad Range of Pd-Catalyzed Asymmetric Allylic Substitutions. ACS Catalysis, 2018, 8, 3587-3601 Pyrrolidine-Based P,O Ligands from Carbohydrates: Easily Accessible and Modular Ligands for the Ir-Catalyzed Asymmetric Hydrogenation of Minimally Functionalized Olefins. ChemcarChem, 2018, 10, 5414-5424 Asymmetric Hydrogenation of Disubstituted, Trisubstituted, and Tetrasubstituted Minimally Functionalized Olefins and Cyclic Enamides with Easily Accessible IrB,Oxazoline Catalysts. ACS 13.1 Amino-P Ligands from Iminosugars: New Readily Available and Modular Ligands for Enantioselective Pd-Catalyzed Allylic Substitutions. Organometallics, 2018, 37, 1682-1694 Enantioselective Portonation. An Experimental and Theoretical Mechanistic Investigation. Advanced Synthesis and Catalysis, 2018, 36, 3124-3137 Triazolylidene Iridium Complexes for Highly Efficient and Versatile Transfer Hydrogenation of C?O, C?N, and C?C Bonds and for Acceptorless Alcohol Oxidation. Inorganic Chemistry, 2017, 56, 11282-11298 Enantioselective Synthesis of 6,6-Disubstituted Pentafulvenes Containing a Chiral Pendant Hydroxy Group. Chemistry - A European Journal, 2017, 23, 17195-17198 Alternatives to Phosphinooxazoline (t-BuPHOX) Ligands in the Metal-Catalyzed Hydrogenation of Minimally Functionalized Olefins and Cyclic Enamides. Advanced Synthesis and Catalysis, 2017, 35, 1238-20 Designing new readily available

137	Adaptable P-X Biaryl Phosphite/Phosphoroamidite-Containing Ligands for Asymmetric Hydrogenation and C-X Bond-Forming Reactions: Ligand Libraries with Exceptionally Wide Substrate Scope. <i>Chemical Record</i> , 2016 , 16, 2460-2481	6.6	18
136	Third-Generation Amino Acid Furanoside-Based Ligands from d-Mannose for the Asymmetric Transfer Hydrogenation of Ketones: Catalysts with an Exceptionally Wide Substrate Scope. <i>Advanced Synthesis and Catalysis</i> , 2016 , 358, 4006-4018	5.6	11
135	Asymmetric Catalyzed Allylic Substitution Using a Pd/PB Catalyst Library with Exceptional High Substrate and Nucleophile Versatility: DFT and Pd-Eallyl Key Intermediates Studies. Organometallics, 2016, 35, 3323-3335	3.8	16
134	Extending the substrate scope of bicyclic p-oxazoline/thiazole ligands for Ir-catalyzed hydrogenation of unfunctionalized olefins by introducing a biaryl phosphoroamidite group. <i>Chemistry - A European Journal</i> , 2015 , 21, 3455-64	4.8	30
133	Stereospecific S(N)2@P reactions: novel access to bulky P-stereogenic ligands. <i>Chemical Communications</i> , 2015 , 51, 17548-51	5.8	30
132	Iridium-Catalyzed Asymmetric Hydrogenation with Simple Cyclohexane-Based P/S Ligands: In Situ HP-NMR and DFT Calculations for the Characterization of Reaction Intermediates. <i>Organometallics</i> , 2015 , 34, 5321-5334	3.8	26
131	Filling the Gaps in the Challenging Asymmetric Hydroboration of 1,1-Disubstituted Alkenes with Simple Phosphite-Based Phosphinooxazoline Iridium Catalysts. <i>ChemCatChem</i> , 2015 , 7, 114-120	5.2	24
130	Theoretical and Experimental Optimization of a New Amino Phosphite Ligand Library for Asymmetric Palladium-Catalyzed Allylic Substitution. <i>ChemCatChem</i> , 2015 , 7, 4091-4107	5.2	16
129	Artificial Metalloenzymes in Asymmetric Catalysis: Key Developments and Future Directions. <i>Advanced Synthesis and Catalysis</i> , 2015 , 357, 1567-1586	5.6	56
128	Rh-catalyzed asymmetric hydrogenation using a furanoside monophosphite second-generation ligand library: scope and limitations. <i>Tetrahedron: Asymmetry</i> , 2014 , 25, 258-262		11
127	Highly versatile Pd-thioether-phosphite catalytic systems for asymmetric allylic alkylation, amination, and etherification reactions. <i>Organic Letters</i> , 2014 , 16, 1892-5	6.2	38
126	Asymmetric hydrogenation of olefins using chiral Crabtree-type catalysts: scope and limitations. <i>Chemical Reviews</i> , 2014 , 114, 2130-69	68.1	336
125	A theoretically-guided optimization of a new family of modular P,S-ligands for iridium-catalyzed hydrogenation of minimally functionalized olefins. <i>Chemistry - A European Journal</i> , 2014 , 20, 12201-14	4.8	36
124	Modular Hydroxyamide and Thioamide Pyranoside-Based Ligand Library from the Sugar Pool: New Class of Ligands for Asymmetric Transfer Hydrogenation of Ketones. <i>Advanced Synthesis and Catalysis</i> , 2014 , 356, 2293-2302	5.6	16
123	Application of pyranoside phosphite-pyridine ligands to enantioselective metal-catalyzed allylic substitutions and conjugate 1,4-additions. <i>Tetrahedron: Asymmetry</i> , 2013 , 24, 995-1000		25
122	Second-Generation Amino Acid Furanoside Based Ligands from D-Glucose for the Asymmetric Transfer Hydrogenation of Ketones. <i>ChemCatChem</i> , 2013 , 5, 3821-3828	5.2	10
121	A Modular Furanoside Thioether-Phosphite/Phosphinite/Phosphine Ligand Library for Asymmetric Iridium-Catalyzed Hydrogenation of Minimally Functionalized Olefins: Scope and Limitations. <i>Advanced Synthesis and Catalysis</i> , 2013 , 355, 143-160	5.6	36
120	Phosphite-Thiazoline versus Phosphite-Oxazoline for Pd-Catalyzed Allylic Substitution Reactions: A Case for Comparison. <i>ChemCatChem</i> , 2013 , 5, 1504-1516	5.2	11

(2011-2013)

119	Expanded Scope of the Asymmetric Hydrogenation of Minimally Functionalized Olefins Catalyzed by Iridium Complexes with PhosphiteII hiazoline Ligands. <i>ChemCatChem</i> , 2013 , 5, 2410-2417	5.2	25
118	Carbohydrate-Derived Ligands in Asymmetric Tsujillrost Reactions 2013 , 217-244		1
117	Hydrogenation Reactions 2013 , 155-182		
116	Carbohydrate-Derived Ligands in Asymmetric Heck Reactions 2013 , 245-251		3
115	A Phosphite-Pyridine/Iridium Complex Library as Highly Selective Catalysts for the Hydrogenation of Minimally Functionalized Olefins. <i>Advanced Synthesis and Catalysis</i> , 2013 , 355, 2569-2583	5.6	30
114	Enantioselective Ir-Catalyzed Hydrogenation of Minimally Functionalized Olefins Using Pyranoside Phosphinite-Oxazoline Ligands. <i>European Journal of Inorganic Chemistry</i> , 2013 , 2013, 2139-2145	2.3	10
113	A new modular phosphite-pyridine ligand library for asymmetric Pd-catalyzed allylic substitution reactions: a study of the key Pd-Eallyl intermediates. <i>Chemistry - A European Journal</i> , 2013 , 19, 2416-32	4.8	33
112	Furanoside phosphitephosphoroamidite and diphosphoroamidite ligands applied to asymmetric Cu-catalyzed allylic substitution reactions. <i>Tetrahedron: Asymmetry</i> , 2012 , 23, 67-71		8
111	Modular Furanoside Pseudodipeptides and Thioamides, Readily Available Ligand Libraries for Metal-Catalyzed Transfer Hydrogenation Reactions: Scope and Limitations. <i>Advanced Synthesis and Catalysis</i> , 2012 , 354, 415-427	5.6	22
110	Conjugate Addition of Organoaluminum Species to Michael Acceptors and Related Processes. <i>Topics in Organometallic Chemistry</i> , 2012 , 277-306	0.6	4
109	Asymmetric Rh-catalyzed hydrogenation using a furanoside phosphite-phosphoroamidite and diphosphoroamidite ligand library. <i>Dalton Transactions</i> , 2012 , 41, 3038-45	4.3	5
108	The application of pyranoside phosphite-pyridine ligands to enantioselective Ir-catalyzed hydrogenations of highly unfunctionalized olefins. <i>Tetrahedron: Asymmetry</i> , 2012 , 23, 945-951		20
107	Ir-Catalyzed Hydrogenation of Minimally Functionalized Olefins Using Phosphite⊠itrogen Ligands 2012 , 153-165		2
106	Asymmetric Intermolecular Mizoroki-Heck Reaction: From Phosphine/Phosphinite-Nitrogen to Phosphite-Nitrogen Ligands. <i>Israel Journal of Chemistry</i> , 2012 , 52, 572-581	3.4	13
105	Phosphite-containing ligands for asymmetric catalysis. <i>Chemical Reviews</i> , 2011 , 111, 2077-118	68.1	238
104	Thioether-phosphite: new ligands for the highly enantioselective Ir-catalyzed hydrogenation of minimally functionalized olefins. <i>Chemical Communications</i> , 2011 , 47, 9215-7	5.8	38
103	Phosphite-oxazole/imidazole ligands in asymmetric intermolecular Heck reaction. <i>Organic and Biomolecular Chemistry</i> , 2011 , 9, 941-6	3.9	38
102	Iridium-Catalyzed Hydrogenation Using Phosphorus Ligands. <i>Topics in Organometallic Chemistry</i> , 2011 , 11-29	0.6	16

101	Pyranoside phosphite-oxazoline ligands for the highly versatile and enantioselective ir-catalyzed hydrogenation of minimally functionalized olefins. A combined theoretical and experimental study. Journal of the American Chemical Society, 2011 , 133, 13634-45	16.4	147
100	Carbohydrate-based pseudo-dipeptides: new ligands for the highly enantioselective Ru-catalyzed transfer hydrogenation reaction. <i>Chemical Communications</i> , 2011 , 47, 12188-90	5.8	20
99	C1-symmetric carbohydrate diphosphite ligands for asymmetric Pd-allylic alkylation reactions. Study of the key Pd-allyl intermediates. <i>Dalton Transactions</i> , 2011 , 40, 2852-60	4.3	7
98	Sugar-monophosphite ligands applied to the asymmetric Ni-catalyzed trialkylaluminum addition to aldehydes. <i>Tetrahedron: Asymmetry</i> , 2011 , 22, 834-839		10
97	Biaryl phosphites: new efficient adaptative ligands for Pd-catalyzed asymmetric allylic substitution reactions. <i>Accounts of Chemical Research</i> , 2010 , 43, 312-22	24.3	166
96	A new class of modular P,N-ligand library for asymmetric Pd-catalyzed allylic substitution reactions: a study of the key Pd-pi-allyl intermediates. <i>Chemistry - A European Journal</i> , 2010 , 16, 620-38	4.8	27
95	Biaryl phosphite-oxazoline ligands from the chiral pool: highly efficient modular ligands for the asymmetric Pd-catalyzed Heck reaction. <i>Chemistry - A European Journal</i> , 2010 , 16, 3434-40	4.8	46
94	Adaptative biaryl phosphite-oxazole and phosphite-thiazole ligands for asymmetric Ir-catalyzed hydrogenation of alkenes. <i>Chemistry - A European Journal</i> , 2010 , 16, 4567-76	4.8	50
93	Asymmetric hydrogenation of minimally functionalised terminal olefins: an alternative sustainable and direct strategy for preparing enantioenriched hydrocarbons. <i>Chemistry - A European Journal</i> , 2010 , 16, 14232-40	4.8	88
92	Fine-tunable monodentate phosphoroamidite and aminophosphine ligands for Rh-catalyzed asymmetric hydroformylation. <i>Tetrahedron: Asymmetry</i> , 2010 , 21, 2153-2157		20
91	Use of sugar-based ligands in selective catalysis: Recent developments. <i>Coordination Chemistry Reviews</i> , 2010 , 254, 2007-2030	23.2	83
90	Modular Furanoside Phosphite-Phosphoroamidites, a Readily Available Ligand Library for Asymmetric Palladium-Catalyzed Allylic Substitution Reactions. Origin of Enantioselectivity. <i>Advanced Synthesis and Catalysis</i> , 2009 , 351, 1648-1670	5.6	33
89	Pyranoside Phosphite-Oxazoline Ligand Library: Highly Efficient Modular P,N Ligands for Palladium-Catalyzed Allylic Substitution Reactions. A Study of the Key Palladium Allyl Intermediates. <i>Advanced Synthesis and Catalysis</i> , 2009 , 351, 3217-3234	5.6	47
88	Furanoside phosphitephosphoroamidite and diphosphoroamidite ligands for Cu-catalyzed asymmetric 1,4-addition reactions. <i>Tetrahedron: Asymmetry</i> , 2009 , 20, 1930-1935		6
87	Furanoside phosphitephosphoroamidite: new ligand class for the asymmetric nickel-catalyzed trialkylaluminium addition to aldehydes. <i>Tetrahedron Letters</i> , 2009 , 50, 4495-4497	2	12
86	Screening of a modular sugar-based phosphoroamidite ligand library in the asymmetric nickel-catalyzed trialkylaluminium addition to aldehydes. <i>Tetrahedron: Asymmetry</i> , 2009 , 20, 1575-1579		13
85	Sugar-based phosphite and phosphoroamidite ligands for the Cu-catalyzed asymmetric 1,4-addition to enones. <i>Tetrahedron: Asymmetry</i> , 2009 , 20, 2167-2172		15
84	Hydroformylation of oct-1-ene catalyzed by dinuclear gem-dithiolato-bridged rhodium(I) complexes and phosphorus donor ligands. <i>Journal of Molecular Catalysis A</i> , 2009 , 300, 121-131		12

(2006-2009)

83	Iridium phosphite-oxazoline catalysts for the highly enantioselective hydrogenation of terminal alkenes. <i>Journal of the American Chemical Society</i> , 2009 , 131, 12344-53	16.4	120
82	Rh-catalyzed asymmetric hydroformylation of heterocyclic olefins using chiral diphosphite ligands. Scope and limitations. <i>Journal of Organic Chemistry</i> , 2009 , 74, 5440-5	4.2	46
81	Chiral pyranoside phosphite-oxazolines: a new class of ligand for asymmetric catalytic hydrogenation of alkenes. <i>Journal of the American Chemical Society</i> , 2008 , 130, 7208-9	16.4	89
8o	Biaryl phosphite-oxazolines from hydroxyl aminoacid derivatives: highly efficient modular ligands for Ir-catalyzed hydrogenation of alkenes. <i>Chemical Communications</i> , 2008 , 3888-90	5.8	47
79	Screening of a phosphite-phosphoramidite ligand library for palladium-catalysed asymmetric allylic substitution reactions: the origin of enantioselectivity. <i>Chemistry - A European Journal</i> , 2008 , 14, 944-60	4.8	50
78	Modular phosphite-oxazoline/oxazine ligand library for asymmetric pd-catalyzed allylic substitution reactions: scope and limitations-origin of enantioselectivity. <i>Chemistry - A European Journal</i> , 2008 , 14, 3653-69	4.8	56
77	Palladium Nanoparticles in Allylic Alkylations and Heck Reactions: The Molecular Nature of the Catalyst Studied in a Membrane Reactor. <i>Advanced Synthesis and Catalysis</i> , 2008 , 350, 2583-2598	5.6	55
76	Screening of modular sugar phosphite-oxazoline and phosphite-phosphoroamidite ligand libraries in the asymmetric nickel-catalyzed trialkylaluminium addition to aldehydes. <i>Inorganica Chimica Acta</i> , 2008, 361, 1381-1384	2.7	12
75	Enantioselective copper-catalyzed conjugate addition and allylic substitution reactions. <i>Chemical Reviews</i> , 2008 , 108, 2796-823	68.1	856
74	First chiral phosphoroamidite-phosphite ligands for highly enantioselective and versatile Pd-catalyzed asymmetric allylic substitution reactions. <i>Organic Letters</i> , 2007 , 9, 49-52	6.2	35
73	Sugar-based diphosphoroamidite as a promising new class of ligands in Pd-catalyzed asymmetric allylic alkylation reactions. <i>Journal of Organic Chemistry</i> , 2007 , 72, 2842-50	4.2	40
72	Screening of a modular sugar-based phosphite-oxazoline ligand library in asymmetric Pd-catalyzed heck reactions. <i>Chemistry - A European Journal</i> , 2007 , 13, 3296-304	4.8	84
71	New Highly Effective Phosphite-Phosphoramidite Ligands for Palladium-Catalysed Asymmetric Allylic Alkylation Reactions. <i>Advanced Synthesis and Catalysis</i> , 2007 , 349, 836-840	5.6	23
70	Recent Progress in Asymmetric Catalysis Using Chiral Carbohydrate-Based Ligands. <i>European Journal of Organic Chemistry</i> , 2007 , 2007, 4621-4634	3.2	88
69	Sugarphosphitebxazoline and phosphitephosphoroamidite ligand libraries for Cu-catalyzed asymmetric 1,4-addition reactions. <i>Tetrahedron: Asymmetry</i> , 2007 , 18, 1613-1617		29
68	Thioether containing ligands for asymmetric allylic substitution reactions. <i>Comptes Rendus Chimie</i> , 2007 , 10, 188-205	2.7	39
67	Screening of a modular sugar-based phosphite ligand library in the Cu-catalyzed asymmetric 1,4-addition reactions. <i>Journal of Organometallic Chemistry</i> , 2007 , 692, 4315-4320	2.3	10
66	PhosphiteBxazoline ligands for Rh-catalyzed asymmetric hydrosilylation of ketones. <i>Journal of Molecular Catalysis A</i> , 2006 , 249, 207-210		13

65	Asymmetric Hydroformylation 2006 , 35-64		46
64	A highly selective synthesis of 3-hydroxy-2-methylpropionamide involving a one-pot tandem hydroformylation-hydrogenation sequence. <i>Chemical Communications</i> , 2006 , 191-3	5.8	16
63	Screening of a modular sugar-based phosphite ligand library in the asymmetric nickel-catalyzed trialkylaluminum addition to aldehydes. <i>Journal of Organic Chemistry</i> , 2006 , 71, 8159-65	4.2	42
62	Furanoside thioetherphosphinite ligands for Pd-catalyzed asymmetric allylic substitution reactions: Scope and limitations. <i>Journal of Organometallic Chemistry</i> , 2006 , 691, 2257-2262	2.3	18
61	Pyranoside phosphitephosphoroamidite ligands for Pd-catalyzed asymmetric allylic alkylation reactions. <i>Tetrahedron: Asymmetry</i> , 2006 , 17, 3282-3287		12
60	First successful application of diphosphite ligands in the asymmetric hydroformylation of dihydrofurans. <i>Chemical Communications</i> , 2005 , 1221-3	5.8	40
59	Asymmetric hydrogenation of prochiral olefins catalysed by furanoside thioether-phosphinite Rh(I) and Ir(I) complexes. <i>Dalton Transactions</i> , 2005 , 2557-62	4.3	25
58	Chiral phosphite-oxazolines: a new class of ligands for asymmetric Heck reactions. <i>Organic Letters</i> , 2005 , 7, 5597-9	6.2	56
57	Palladium-diphosphite catalysts for the asymmetric allylic substitution reactions. <i>Journal of Organic Chemistry</i> , 2005 , 70, 3363-8	4.2	60
56	Allylic Alkylations Catalyzed by Palladium Systems Containing Modular Chiral Dithioethers. A Structural Study of the Allylic Intermediates. <i>Organometallics</i> , 2005 , 24, 3946-3956	3.8	33
55	New phosphite-oxazoline ligands for efficient Pd-catalyzed substitution reactions. <i>Journal of the American Chemical Society</i> , 2005 , 127, 3646-7	16.4	120
54	Pd-catalyzed asymmetric allylic alkylation using furanoside diphosphinite ligands. <i>Inorganica Chimica Acta</i> , 2005 , 358, 3824-3828	2.7	7
53	Furanoside thioetherphosphinite ligands for Pd-catalyzed asymmetric allylic substitution reactions. <i>Tetrahedron: Asymmetry</i> , 2005 , 16, 959-963		34
52	ThioetherBhosphinite and diphosphinite ligands derived from d-xylose for the copper-catalyzed asymmetric 1,4-addition to 2-cyclohexenone. <i>Tetrahedron: Asymmetry</i> , 2005 , 16, 2161-2165		16
51	Furanoside thioetherphosphinite ligands for Rh-catalyzed asymmetric hydrosilylation of ketones. <i>Tetrahedron: Asymmetry</i> , 2005 , 16, 3877-3880		18
50	Asymmetric hydroformylation of vinyl arenes catalyzed by furanoside diphosphinites-Rh(I) complexes. <i>Applied Catalysis A: General</i> , 2005 , 282, 215-220	5.1	12
49	Cationic Iridium Complexes with Chiral Dithioether Ligands: Synthesis, Characterisation and Reactivity under Hydrogenation Conditions. <i>European Journal of Inorganic Chemistry</i> , 2005 , 2005, 2315-	2323	6
48	Modular Furanoside Diphosphite Ligands for Pd-Catalyzed Asymmetric Allylic Substitution Reactions: Scope and Limitations. <i>Advanced Synthesis and Catalysis</i> , 2005 , 347, 1257-1266	5.6	40

(2001-2005)

47	New Carbohydrate-Based Phosphite-Oxazoline Ligands as Highly Versatile Ligands for Palladium-Catalyzed Allylic Substitution Reactions. <i>Advanced Synthesis and Catalysis</i> , 2005 , 347, 1943-19	947	69
46	Furanoside diphosphinites as suitable ligands for the asymmetric catalytic hydrogenation of prochiral olefins. <i>Tetrahedron: Asymmetry</i> , 2004 , 15, 2247-2251		19
45	Cationic iridium complexes with C2-symmetry binaphthalene-core disulfide ligands. <i>Inorganica Chimica Acta</i> , 2004 , 357, 2957-2964	2.7	
44	Recent advances in Rh-catalyzed asymmetric hydroformylation using phosphite ligands. <i>Tetrahedron: Asymmetry</i> , 2004 , 15, 2113-2122		131
43	Carbohydrate derivative ligands in asymmetric catalysis. Coordination Chemistry Reviews, 2004, 248, 216	5 5 -3219	2 160
42	Ligands derived from carbohydrates for asymmetric catalysis. <i>Chemical Reviews</i> , 2004 , 104, 3189-216	68.1	239
41	Phosphite Ligands in Asymmetric Hydrogenation. ACS Symposium Series, 2004, 161-173	0.4	4
40	Cationic iridium complexes with C2-symmetry binaphthalene-core disulfide ligands: Synthesis and catalytic activity in the hydrogenation of alkenes. <i>Inorganica Chimica Acta</i> , 2004 , 357, 2957-2964	2.7	7
39	Chiral thioether ligands: coordination chemistry and asymmetric catalysis. <i>Coordination Chemistry Reviews</i> , 2003 , 242, 159-201	23.2	172
38	Rhodium-sulfonated diphosphine catalysts in aqueous hydroformylation of vinyl arenes: high-pressure NMR and IR studies. <i>Journal of Molecular Catalysis A</i> , 2003 , 195, 113-124		20
37	Tunable furanoside diphosphite ligands. A powerful approach in asymmetric catalysis. <i>Dalton Transactions</i> , 2003 , 2957-2963	4.3	69
36	Modular carbohydrate diphosphite and phosphitephosphoroamidite ligands for asymmetric Rh-catalyzed hydrosilylation of ketones. <i>Tetrahedron: Asymmetry</i> , 2002 , 13, 83-86		17
35	Mixed thioether-phosphite and phosphine-phosphite ligands for copper-catalyzed asymmetric 1,4-addition of organometallic reagents to cyclohexenone. <i>Journal of Molecular Catalysis A</i> , 2002 , 185, 11-16		16
34	Asymmetric hydroformylation of styrene catalyzed by carbohydrate diphosphite-Rh(I) complexes. <i>New Journal of Chemistry</i> , 2002 , 26, 827-833	3.6	60
33	Chiral diphosphites derived from D-glucose: new highly modular ligands for the asymmetric catalytic hydrogenation. <i>Journal of Organic Chemistry</i> , 2002 , 67, 3796-801	4.2	61
32	Synthesis and structural studies of rhodium(I)-catalytic precursors containing two furanoside diphosphines. <i>Journal of Organometallic Chemistry</i> , 2001 , 629, 77-82	2.3	3
31	Furanoside diphosphines derived from d-(+)-xylose and d-(+)-glucose as ligands in rhodium-catalysed asymmetric hydroformylation reactions. <i>Tetrahedron: Asymmetry</i> , 2001 , 12, 651-656		17
30	Chiral S,S-donor ligands in palladium-catalysed allylic alkylation. <i>Tetrahedron: Asymmetry</i> , 2001 , 12, 1469	9-1474	27

29	Chiral furanoside phosphitephosphoroamidites: new ligands for asymmetric catalytic hydroformylation. <i>Tetrahedron: Asymmetry</i> , 2001 , 12, 2827-2834		32
28	Novel chiral dithioethers derived from l-tartaric acid. <i>Tetrahedron: Asymmetry</i> , 2001 , 12, 3029-3034		4
27	New chiral amino-phosphite and phosphite-phosphoroamidite ligands for the copper-catalyzed asymmetric 1,4-addition of diethylzinc to cyclohexenone. <i>Tetrahedron: Asymmetry</i> , 2001 , 12, 2861-2866		21
26	Chiral diphosphites derived from d-glucose in the copper-catalyzed conjugate addition of diethylzinc to cyclohexenone. <i>Tetrahedron: Asymmetry</i> , 2001 , 12, 2895-2900		40
25	Chiral diphosphites derived from D-glucose: new ligands for the asymmetric catalytic hydroformylation of vinyl arenes. <i>Chemistry - A European Journal</i> , 2001 , 7, 3086-94	4.8	117
24	Diphosphites as a promising new class of ligands in Pd-catalysed asymmetric allylic alkylation. <i>Chemical Communications</i> , 2001 , 1132-1133	5.8	47
23	Chiral phosphiteBhosphoroamidites: a new class of ligand for asymmetric catalytic hydrogenation. <i>Chemical Communications</i> , 2001 , 2702-2703	5.8	34
22	Modular furanoside phosphite ligands for asymmetric Pd-catalyzed allylic substitution. <i>Journal of Organic Chemistry</i> , 2001 , 66, 8867-71	4.2	77
21	Chiral phosphine-phosphite ligands in the highly enantioselective rhodium-catalyzed asymmetric hydrogenation. <i>Journal of Organic Chemistry</i> , 2001 , 66, 7626-31	4.2	46
20	Highly enantioselective Rh-catalyzed hydrogenation based on phosphine-phosphite ligands derived from carbohydrates. <i>Journal of Organic Chemistry</i> , 2001 , 66, 8364-9	4.2	60
19	Copper-catalysed asymmetric 1,4-addition of organometallic reagents to 2-cyclohexenone using novel phosphine-phosphite ligands. <i>Tetrahedron: Asymmetry</i> , 2000 , 11, 3161-3166		45
18	Highly active and enantioselective copper-catalyzed conjugate addition of diethylzinc to cyclohexenone using sugar derivative diphosphites. <i>Tetrahedron: Asymmetry</i> , 2000 , 11, 4377-4383		35
17	Synthesis of novel diphosphines from d-(+)-glucose. Use in asymmetric hydrogenation. <i>Tetrahedron: Asymmetry</i> , 2000 , 11, 4701-4708		14
16	Organometallic color chemistry: studies on [FcCH?CHC5H4NCH2C6H4(tBu)]X (X=BPh4[IClO4]] Journal of Organometallic Chemistry, 2000 , 608, 146-152	2.3	7
15	Synthesis and Coordination Chemistry of Novel Chiral P,S-Ligands with a Xylofuranose Backbone: Use in Asymmetric Hydroformylation and Hydrogenation. <i>Organometallics</i> , 2000 , 19, 1488-1496	3.8	76
14	Novel diphosphite derived from D-gluco-furanose provides high regio- and enantioselectivity in Rh-catalysed hydroformylation of vinyl arenes. <i>Chemical Communications</i> , 2000 , 1607-1608	5.8	53
13	Synthesis and stereochemical study of new complexes of Pd and Pt with chiral dithioether ligands. <i>Dalton Transactions RSC</i> , 2000 , 4154-4159		4
12	Phosphinephosphite, a new class of auxiliaries in highly active and enantioselective hydrogenation. <i>Chemical Communications</i> , 2000 , 2383-2384	5.8	36

LIST OF PUBLICATIONS

11	Rhodium-diphosphine catalysts for the hydroformylation of styrene: the influence of the excess of ligand and the chelate ring size on the reaction selectivity. <i>Journal of Molecular Catalysis A</i> , 1999 , 143, 111-122		37	
10	Recoverable chiral palladium ulfonated diphosphine catalysts for the asymmetric hydrocarboxylation of vinyl arenes. <i>Tetrahedron: Asymmetry</i> , 1999 , 10, 4463-4467		43	
9	Synthesis, reactivity and catalytic properties of rhodium complexes of (R,R)-1-benzyl-3,4-dithioetherpyrrolidines. <i>Inorganica Chimica Acta</i> , 1999 , 295, 64-70	2.7	13	
8	High-Pressure Infrared Studies of Rhodium Complexes Containing Thiolate Bridge Ligands under Hydroformylation Conditions. <i>Organometallics</i> , 1999 , 18, 2107-2115	3.8	50	
7	Iridium complexes containing the first sugar dithioether ligands. Application as catalyst precursors in asymmetric hydrogenation. <i>Journal of the Chemical Society Dalton Transactions</i> , 1999 , 3439-3444		23	
6	Rhodium cationic complexes using dithioethers as chiral ligands. Application in styrene hydroformylation. <i>Journal of Organometallic Chemistry</i> , 1998 , 559, 23-29	2.3	14	
5	Iridium complexes with new 1,2-dithioether chiral ligands containing a rigid cyclic backbone. Application in homogeneous catalytic asymmetric hydrogenation □ Journal of the Chemical Society Dalton Transactions, 1998, 3517-3522		16	
4	Synthesis and reactivity of cationic iridium(I) complexes of cycloocta-1,5-diene and chiral dithioether ligands. Application as catalyst precursors in asymmetric hydrogenation. <i>Journal of the Chemical Society Dalton Transactions</i> , 1997 , 4611-4618		22	
3	Asymmetric Carbonylations799-838		6	
2	Enantioselective Carbonylation Reactions65-92		9	
1	Chiral Ligands		4	