Montserrat Diguez

List of Publications by Citations

Source: https://exaly.com/author-pdf/6439091/montserrat-dieguez-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

172 6,917 43 76 g-index

248 7,555 8.3 6
ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
172	Enantioselective copper-catalyzed conjugate addition and allylic substitution reactions. <i>Chemical Reviews</i> , 2008 , 108, 2796-823	68.1	856
171	Asymmetric hydrogenation of olefins using chiral Crabtree-type catalysts: scope and limitations. <i>Chemical Reviews</i> , 2014 , 114, 2130-69	68.1	336
170	Ligands derived from carbohydrates for asymmetric catalysis. <i>Chemical Reviews</i> , 2004 , 104, 3189-216	68.1	239
169	Phosphite-containing ligands for asymmetric catalysis. <i>Chemical Reviews</i> , 2011 , 111, 2077-118	68.1	238
168	Chiral thioether ligands: coordination chemistry and asymmetric catalysis. <i>Coordination Chemistry Reviews</i> , 2003 , 242, 159-201	23.2	172
167	Biaryl phosphites: new efficient adaptative ligands for Pd-catalyzed asymmetric allylic substitution reactions. <i>Accounts of Chemical Research</i> , 2010 , 43, 312-22	24.3	166
166	Carbohydrate derivative ligands in asymmetric catalysis. <i>Coordination Chemistry Reviews</i> , 2004 , 248, 21	6 5 -3219	2 160
165	Pyranoside phosphite-oxazoline ligands for the highly versatile and enantioselective ir-catalyzed hydrogenation of minimally functionalized olefins. A combined theoretical and experimental study. Journal of the American Chemical Society, 2011, 133, 13634-45	16.4	147
164	Recent advances in Rh-catalyzed asymmetric hydroformylation using phosphite ligands. <i>Tetrahedron: Asymmetry</i> , 2004 , 15, 2113-2122		131
163	Iridium phosphite-oxazoline catalysts for the highly enantioselective hydrogenation of terminal alkenes. <i>Journal of the American Chemical Society</i> , 2009 , 131, 12344-53	16.4	120
162	New phosphite-oxazoline ligands for efficient Pd-catalyzed substitution reactions. <i>Journal of the American Chemical Society</i> , 2005 , 127, 3646-7	16.4	120
161	Chiral diphosphites derived from D-glucose: new ligands for the asymmetric catalytic hydroformylation of vinyl arenes. <i>Chemistry - A European Journal</i> , 2001 , 7, 3086-94	4.8	117
160	Chiral pyranoside phosphite-oxazolines: a new class of ligand for asymmetric catalytic hydrogenation of alkenes. <i>Journal of the American Chemical Society</i> , 2008 , 130, 7208-9	16.4	89
159	Asymmetric hydrogenation of minimally functionalised terminal olefins: an alternative sustainable and direct strategy for preparing enantioenriched hydrocarbons. <i>Chemistry - A European Journal</i> , 2010 , 16, 14232-40	4.8	88
158	Recent Progress in Asymmetric Catalysis Using Chiral Carbohydrate-Based Ligands. <i>European Journal of Organic Chemistry</i> , 2007 , 2007, 4621-4634	3.2	88
157	Screening of a modular sugar-based phosphite-oxazoline ligand library in asymmetric Pd-catalyzed heck reactions. <i>Chemistry - A European Journal</i> , 2007 , 13, 3296-304	4.8	84
156	Use of sugar-based ligands in selective catalysis: Recent developments. <i>Coordination Chemistry Reviews</i> , 2010 , 254, 2007-2030	23.2	83

155	Recent Advances in Enantioselective Pd-Catalyzed Allylic Substitution: From Design to Applications. <i>Chemical Reviews</i> , 2021 , 121, 4373-4505	68.1	78
154	Modular furanoside phosphite ligands for asymmetric Pd-catalyzed allylic substitution. <i>Journal of Organic Chemistry</i> , 2001 , 66, 8867-71	4.2	77
153	Synthesis and Coordination Chemistry of Novel Chiral P,S-Ligands with a Xylofuranose Backbone: Use in Asymmetric Hydroformylation and Hydrogenation. <i>Organometallics</i> , 2000 , 19, 1488-1496	3.8	76
152	Tunable furanoside diphosphite ligands. A powerful approach in asymmetric catalysis. <i>Dalton Transactions</i> , 2003 , 2957-2963	4.3	69
151	New Carbohydrate-Based Phosphite-Oxazoline Ligands as Highly Versatile Ligands for Palladium-Catalyzed Allylic Substitution Reactions. <i>Advanced Synthesis and Catalysis</i> , 2005 , 347, 1943-19	9 4 7	69
150	Chiral diphosphites derived from D-glucose: new highly modular ligands for the asymmetric catalytic hydrogenation. <i>Journal of Organic Chemistry</i> , 2002 , 67, 3796-801	4.2	61
149	Palladium-diphosphite catalysts for the asymmetric allylic substitution reactions. <i>Journal of Organic Chemistry</i> , 2005 , 70, 3363-8	4.2	60
148	Asymmetric hydroformylation of styrene catalyzed by carbohydrate diphosphite-Rh(I) complexes. <i>New Journal of Chemistry</i> , 2002 , 26, 827-833	3.6	60
147	Highly enantioselective Rh-catalyzed hydrogenation based on phosphine-phosphite ligands derived from carbohydrates. <i>Journal of Organic Chemistry</i> , 2001 , 66, 8364-9	4.2	60
146	Artificial Metalloenzymes in Asymmetric Catalysis: Key Developments and Future Directions. <i>Advanced Synthesis and Catalysis</i> , 2015 , 357, 1567-1586	5.6	56
145	Modular phosphite-oxazoline/oxazine ligand library for asymmetric pd-catalyzed allylic substitution reactions: scope and limitations-origin of enantioselectivity. <i>Chemistry - A European Journal</i> , 2008 , 14, 3653-69	4.8	56
144	Chiral phosphite-oxazolines: a new class of ligands for asymmetric Heck reactions. <i>Organic Letters</i> , 2005 , 7, 5597-9	6.2	56
143	Palladium Nanoparticles in Allylic Alkylations and Heck Reactions: The Molecular Nature of the Catalyst Studied in a Membrane Reactor. <i>Advanced Synthesis and Catalysis</i> , 2008 , 350, 2583-2598	5.6	55
142	Novel diphosphite derived from D-gluco-furanose provides high regio- and enantioselectivity in Rh-catalysed hydroformylation of vinyl arenes. <i>Chemical Communications</i> , 2000 , 1607-1608	5.8	53
141	Adaptative biaryl phosphite-oxazole and phosphite-thiazole ligands for asymmetric Ir-catalyzed hydrogenation of alkenes. <i>Chemistry - A European Journal</i> , 2010 , 16, 4567-76	4.8	50
140	Screening of a phosphite-phosphoramidite ligand library for palladium-catalysed asymmetric allylic substitution reactions: the origin of enantioselectivity. <i>Chemistry - A European Journal</i> , 2008 , 14, 944-60	4.8	50
139	High-Pressure Infrared Studies of Rhodium Complexes Containing Thiolate Bridge Ligands under Hydroformylation Conditions. <i>Organometallics</i> , 1999 , 18, 2107-2115	3.8	50
138	Pyranoside Phosphite-Oxazoline Ligand Library: Highly Efficient Modular P,N Ligands for Palladium-Catalyzed Allylic Substitution Reactions. A Study of the Key Palladium Allyl Intermediates. <i>Advanced Synthesis and Catalysis</i> , 2009 , 351, 3217-3234	5.6	47

137	Biaryl phosphite-oxazolines from hydroxyl aminoacid derivatives: highly efficient modular ligands for Ir-catalyzed hydrogenation of alkenes. <i>Chemical Communications</i> , 2008 , 3888-90	5.8	47
136	Diphosphites as a promising new class of ligands in Pd-catalysed asymmetric allylic alkylation. <i>Chemical Communications</i> , 2001 , 1132-1133	5.8	47
135	Rh-catalyzed asymmetric hydroformylation of heterocyclic olefins using chiral diphosphite ligands. Scope and limitations. <i>Journal of Organic Chemistry</i> , 2009 , 74, 5440-5	4.2	46
134	Biaryl phosphite-oxazoline ligands from the chiral pool: highly efficient modular ligands for the asymmetric Pd-catalyzed Heck reaction. <i>Chemistry - A European Journal</i> , 2010 , 16, 3434-40	4.8	46
133	Asymmetric Hydroformylation 2006 , 35-64		46
132	Chiral phosphine-phosphite ligands in the highly enantioselective rhodium-catalyzed asymmetric hydrogenation. <i>Journal of Organic Chemistry</i> , 2001 , 66, 7626-31	4.2	46
131	Copper-catalysed asymmetric 1,4-addition of organometallic reagents to 2-cyclohexenone using novel phosphine-phosphite ligands. <i>Tetrahedron: Asymmetry</i> , 2000 , 11, 3161-3166		45
130	Triazolylidene Iridium Complexes for Highly Efficient and Versatile Transfer Hydrogenation of C?O, C?N, and C?C Bonds and for Acceptorless Alcohol Oxidation. <i>Inorganic Chemistry</i> , 2017 , 56, 11282-1129	8 ^{5.1}	44
129	Recoverable chiral palladium ulfonated diphosphine catalysts for the asymmetric hydrocarboxylation of vinyl arenes. <i>Tetrahedron: Asymmetry</i> , 1999 , 10, 4463-4467		43
128	Screening of a modular sugar-based phosphite ligand library in the asymmetric nickel-catalyzed trialkylaluminum addition to aldehydes. <i>Journal of Organic Chemistry</i> , 2006 , 71, 8159-65	4.2	42
127	Sugar-based diphosphoroamidite as a promising new class of ligands in Pd-catalyzed asymmetric allylic alkylation reactions. <i>Journal of Organic Chemistry</i> , 2007 , 72, 2842-50	4.2	40
126	First successful application of diphosphite ligands in the asymmetric hydroformylation of dihydrofurans. <i>Chemical Communications</i> , 2005 , 1221-3	5.8	40
125	Modular Furanoside Diphosphite Ligands for Pd-Catalyzed Asymmetric Allylic Substitution Reactions: Scope and Limitations. <i>Advanced Synthesis and Catalysis</i> , 2005 , 347, 1257-1266	5.6	40
124	Chiral diphosphites derived from d-glucose in the copper-catalyzed conjugate addition of diethylzinc to cyclohexenone. <i>Tetrahedron: Asymmetry</i> , 2001 , 12, 2895-2900		40
123	Thioether containing ligands for asymmetric allylic substitution reactions. <i>Comptes Rendus Chimie</i> , 2007 , 10, 188-205	2.7	39
122	Highly versatile Pd-thioether-phosphite catalytic systems for asymmetric allylic alkylation, amination, and etherification reactions. <i>Organic Letters</i> , 2014 , 16, 1892-5	6.2	38
121	Thioether-phosphite: new ligands for the highly enantioselective Ir-catalyzed hydrogenation of minimally functionalized olefins. <i>Chemical Communications</i> , 2011 , 47, 9215-7	5.8	38
120	Phosphite-oxazole/imidazole ligands in asymmetric intermolecular Heck reaction. <i>Organic and Biomolecular Chemistry</i> , 2011 , 9, 941-6	3.9	38

(2001-1999)

119	Rhodium-diphosphine catalysts for the hydroformylation of styrene: the influence of the excess of ligand and the chelate ring size on the reaction selectivity. <i>Journal of Molecular Catalysis A</i> , 1999 , 143, 111-122		37	
118	A theoretically-guided optimization of a new family of modular P,S-ligands for iridium-catalyzed hydrogenation of minimally functionalized olefins. <i>Chemistry - A European Journal</i> , 2014 , 20, 12201-14	4.8	36	
117	A Modular Furanoside Thioether-Phosphite/Phosphinite/Phosphine Ligand Library for Asymmetric Iridium-Catalyzed Hydrogenation of Minimally Functionalized Olefins: Scope and Limitations. <i>Advanced Synthesis and Catalysis</i> , 2013 , 355, 143-160	5.6	36	
116	PhosphineBhosphite, a new class of auxiliaries in highly active and enantioselective hydrogenation. <i>Chemical Communications</i> , 2000 , 2383-2384	5.8	36	
115	First chiral phosphoroamidite-phosphite ligands for highly enantioselective and versatile Pd-catalyzed asymmetric allylic substitution reactions. <i>Organic Letters</i> , 2007 , 9, 49-52	6.2	35	
114	Highly active and enantioselective copper-catalyzed conjugate addition of diethylzinc to cyclohexenone using sugar derivative diphosphites. <i>Tetrahedron: Asymmetry</i> , 2000 , 11, 4377-4383		35	
113	Furanoside thioetherphosphinite ligands for Pd-catalyzed asymmetric allylic substitution reactions. <i>Tetrahedron: Asymmetry</i> , 2005 , 16, 959-963		34	
112	Chiral phosphitephosphoroamidites: a new class of ligand for asymmetric catalytic hydrogenation. <i>Chemical Communications</i> , 2001 , 2702-2703	5.8	34	
111	A new modular phosphite-pyridine ligand library for asymmetric Pd-catalyzed allylic substitution reactions: a study of the key Pd-Eallyl intermediates. <i>Chemistry - A European Journal</i> , 2013 , 19, 2416-32	4.8	33	
110	Modular Furanoside Phosphite-Phosphoroamidites, a Readily Available Ligand Library for Asymmetric Palladium-Catalyzed Allylic Substitution Reactions. Origin of Enantioselectivity. <i>Advanced Synthesis and Catalysis</i> , 2009 , 351, 1648-1670	5.6	33	
109	Allylic Alkylations Catalyzed by Palladium Systems Containing Modular Chiral Dithioethers. A Structural Study of the Allylic Intermediates. <i>Organometallics</i> , 2005 , 24, 3946-3956	3.8	33	
108	Chiral furanoside phosphitephosphoroamidites: new ligands for asymmetric catalytic hydroformylation. <i>Tetrahedron: Asymmetry</i> , 2001 , 12, 2827-2834		32	
107	Extending the substrate scope of bicyclic p-oxazoline/thiazole ligands for Ir-catalyzed hydrogenation of unfunctionalized olefins by introducing a biaryl phosphoroamidite group. <i>Chemistry - A European Journal</i> , 2015 , 21, 3455-64	4.8	30	
106	Stereospecific S(N)2@P reactions: novel access to bulky P-stereogenic ligands. <i>Chemical Communications</i> , 2015 , 51, 17548-51	5.8	30	
105	A Phosphite-Pyridine/Iridium Complex Library as Highly Selective Catalysts for the Hydrogenation of Minimally Functionalized Olefins. <i>Advanced Synthesis and Catalysis</i> , 2013 , 355, 2569-2583	5.6	30	
104	SugarphosphiteBxazoline and phosphitephosphoroamidite ligand libraries for Cu-catalyzed asymmetric 1,4-addition reactions. <i>Tetrahedron: Asymmetry</i> , 2007 , 18, 1613-1617		29	
103	A new class of modular P,N-ligand library for asymmetric Pd-catalyzed allylic substitution reactions: a study of the key Pd-pi-allyl intermediates. <i>Chemistry - A European Journal</i> , 2010 , 16, 620-38	4.8	27	
102	Chiral S,S-donor ligands in palladium-catalysed allylic alkylation. <i>Tetrahedron: Asymmetry</i> , 2001 , 12, 146	9-1474	1 27	

101	Extending the Substrate Scope in the Hydrogenation of Unfunctionalized Tetrasubstituted Olefins with Ir-P Stereogenic Aminophosphine-Oxazoline Catalysts. <i>Organic Letters</i> , 2019 , 21, 807-811	6.2	27
100	Iridium-Catalyzed Asymmetric Hydrogenation with Simple Cyclohexane-Based P/S Ligands: In Situ HP-NMR and DFT Calculations for the Characterization of Reaction Intermediates. <i>Organometallics</i> , 2015 , 34, 5321-5334	3.8	26
99	PHOX-Based Phosphite-Oxazoline Ligands for the Enantioselective Ir-Catalyzed Hydrogenation of Cyclic 軠namides. <i>ACS Catalysis</i> , 2016 , 6, 5186-5190	13.1	26
98	Chiral ferrocene-based P,S ligands for Ir-catalyzed hydrogenation of minimally functionalized olefins. Scope and limitations. <i>Tetrahedron</i> , 2016 , 72, 2623-2631	2.4	25
97	Application of pyranoside phosphite-pyridine ligands to enantioselective metal-catalyzed allylic substitutions and conjugate 1,4-additions. <i>Tetrahedron: Asymmetry</i> , 2013 , 24, 995-1000		25
96	Expanded Scope of the Asymmetric Hydrogenation of Minimally Functionalized Olefins Catalyzed by Iridium Complexes with PhosphiteThiazoline Ligands. <i>ChemCatChem</i> , 2013 , 5, 2410-2417	5.2	25
95	Asymmetric hydrogenation of prochiral olefins catalysed by furanoside thioether-phosphinite Rh(I) and Ir(I) complexes. <i>Dalton Transactions</i> , 2005 , 2557-62	4.3	25
94	Filling the Gaps in the Challenging Asymmetric Hydroboration of 1,1-Disubstituted Alkenes with Simple Phosphite-Based Phosphinooxazoline Iridium Catalysts. <i>ChemCatChem</i> , 2015 , 7, 114-120	5.2	24
93	Alternatives to Phosphinooxazoline (t-BuPHOX) Ligands in the Metal-Catalyzed Hydrogenation of Minimally Functionalized Olefins and Cyclic	5.6	24
92	Asymmetric Hydrogenation of Disubstituted, Trisubstituted, and Tetrasubstituted Minimally Functionalized Olefins and Cyclic	13.1	24
91	New Highly Effective Phosphite-Phosphoramidite Ligands for Palladium-Catalysed Asymmetric Allylic Alkylation Reactions. <i>Advanced Synthesis and Catalysis</i> , 2007 , 349, 836-840	5.6	23
90	Iridium complexes containing the first sugar dithioether ligands. Application as catalyst precursors in asymmetric hydrogenation. <i>Journal of the Chemical Society Dalton Transactions</i> , 1999 , 3439-3444		23
89	Modular Furanoside Pseudodipeptides and Thioamides, Readily Available Ligand Libraries for Metal-Catalyzed Transfer Hydrogenation Reactions: Scope and Limitations. <i>Advanced Synthesis and Catalysis</i> , 2012 , 354, 415-427	5.6	22
88	Synthesis and reactivity of cationic iridium(I) complexes of cycloocta-1,5-diene and chiral dithioether ligands. Application as catalyst precursors in asymmetric hydrogenation. <i>Journal of the Chemical Society Dalton Transactions</i> , 1997 , 4611-4618		22
87	New chiral amino-phosphite and phosphite-phosphoroamidite ligands for the copper-catalyzed asymmetric 1,4-addition of diethylzinc to cyclohexenone. <i>Tetrahedron: Asymmetry</i> , 2001 , 12, 2861-2866		21
86	Extending the Substrate Scope for the Asymmetric Iridium-Catalyzed Hydrogenation of Minimally Functionalized Olefins by Using Biaryl Phosphite-Based Modular Ligand Libraries. <i>Chemical Record</i> , 2016 , 16, 1578-90	6.6	21
85	The application of pyranoside phosphite-pyridine ligands to enantioselective Ir-catalyzed hydrogenations of highly unfunctionalized olefins. <i>Tetrahedron: Asymmetry</i> , 2012 , 23, 945-951		20
84	Carbohydrate-based pseudo-dipeptides: new ligands for the highly enantioselective Ru-catalyzed transfer hydrogenation reaction. <i>Chemical Communications</i> , 2011 , 47, 12188-90	5.8	20

83	Fine-tunable monodentate phosphoroamidite and aminophosphine ligands for Rh-catalyzed asymmetric hydroformylation. <i>Tetrahedron: Asymmetry</i> , 2010 , 21, 2153-2157		20
82	Rhodium-sulfonated diphosphine catalysts in aqueous hydroformylation of vinyl arenes: high-pressure NMR and IR studies. <i>Journal of Molecular Catalysis A</i> , 2003 , 195, 113-124		20
81	Conformational Preferences of a Tropos Biphenyl Phosphinooxazoline Ligand with Wide Substrate Scope. <i>ACS Catalysis</i> , 2016 , 6, 1701-1712	13.1	19
80	Furanoside diphosphinites as suitable ligands for the asymmetric catalytic hydrogenation of prochiral olefins. <i>Tetrahedron: Asymmetry</i> , 2004 , 15, 2247-2251		19
79	Phosphite-thioether/selenoether Ligands from Carbohydrates: An Easily Accessible Ligand Library for the Asymmetric Hydrogenation of Functionalized and Unfunctionalized Olefins. <i>ChemCatChem</i> , 2019 , 11, 2142-2168	5.2	18
78	Computationally Guided Design of a Readily Assembled Phosphite Thioether Ligand for a Broad Range of Pd-Catalyzed Asymmetric Allylic Substitutions. <i>ACS Catalysis</i> , 2018 , 8, 3587-3601	13.1	18
77	Furanoside thioetherphosphinite ligands for Pd-catalyzed asymmetric allylic substitution reactions: Scope and limitations. <i>Journal of Organometallic Chemistry</i> , 2006 , 691, 2257-2262	2.3	18
76	Furanoside thioetherphosphinite ligands for Rh-catalyzed asymmetric hydrosilylation of ketones. <i>Tetrahedron: Asymmetry</i> , 2005 , 16, 3877-3880		18
75	Adaptable P-X Biaryl Phosphite/Phosphoroamidite-Containing Ligands for Asymmetric Hydrogenation and C-X Bond-Forming Reactions: Ligand Libraries with Exceptionally Wide Substrate Scope. <i>Chemical Record</i> , 2016 , 16, 2460-2481	6.6	18
74	Modular carbohydrate diphosphite and phosphitephosphoroamidite ligands for asymmetric Rh-catalyzed hydrosilylation of ketones. <i>Tetrahedron: Asymmetry</i> , 2002 , 13, 83-86		17
73	Furanoside diphosphines derived from d-(+)-xylose and d-(+)-glucose as ligands in rhodium-catalysed asymmetric hydroformylation reactions. <i>Tetrahedron: Asymmetry</i> , 2001 , 12, 651-656		17
72	Phosphite-Thiother Ligands Derived from Carbohydrates allow the Enantioswitchable Hydrogenation of Cyclic 眭namides by using either Rh or Ir Catalysts. <i>Chemistry - A European Journal</i> , 2017 , 23, 813-822	4.8	16
71	Theoretical and Experimental Optimization of a New Amino Phosphite Ligand Library for Asymmetric Palladium-Catalyzed Allylic Substitution. <i>ChemCatChem</i> , 2015 , 7, 4091-4107	5.2	16
70	Modular Hydroxyamide and Thioamide Pyranoside-Based Ligand Library from the Sugar Pool: New Class of Ligands for Asymmetric Transfer Hydrogenation of Ketones. <i>Advanced Synthesis and Catalysis</i> , 2014 , 356, 2293-2302	5.6	16
69	Iridium-Catalyzed Hydrogenation Using Phosphorus Ligands. <i>Topics in Organometallic Chemistry</i> , 2011 , 11-29	0.6	16
68	A highly selective synthesis of 3-hydroxy-2-methylpropionamide involving a one-pot tandem hydroformylation-hydrogenation sequence. <i>Chemical Communications</i> , 2006 , 191-3	5.8	16
67	Mixed thioether-phosphite and phosphine-phosphite ligands for copper-catalyzed asymmetric 1,4-addition of organometallic reagents to cyclohexenone. <i>Journal of Molecular Catalysis A</i> , 2002 , 185, 11-16		16
66	Thioether hosphinite and diphosphinite ligands derived from d-xylose for the copper-catalyzed asymmetric 1,4-addition to 2-cyclohexenone. <i>Tetrahedron: Asymmetry</i> , 2005 , 16, 2161-2165		16

65	Iridium complexes with new 1,2-dithioether chiral ligands containing a rigid cyclic backbone. Application in homogeneous catalytic asymmetric hydrogenation. <i>Journal of the Chemical Society Dalton Transactions</i> , 1998 , 3517-3522		16
64	Asymmetric Catalyzed Allylic Substitution Using a Pd/PB Catalyst Library with Exceptional High Substrate and Nucleophile Versatility: DFT and Pd-Eallyl Key Intermediates Studies. <i>Organometallics</i> , 2016 , 35, 3323-3335	3.8	16
63	Sugar-based phosphite and phosphoroamidite ligands for the Cu-catalyzed asymmetric 1,4-addition to enones. <i>Tetrahedron: Asymmetry</i> , 2009 , 20, 2167-2172		15
62	Rhodium cationic complexes using dithioethers as chiral ligands. Application in styrene hydroformylation. <i>Journal of Organometallic Chemistry</i> , 1998 , 559, 23-29	2.3	14
61	Synthesis of novel diphosphines from d-(+)-glucose. Use in asymmetric hydrogenation. <i>Tetrahedron: Asymmetry</i> , 2000 , 11, 4701-4708		14
60	IrBiaryl phosphiteBxazoline catalyst libraries: a breakthrough in the asymmetric hydrogenation of challenging olefins. <i>Catalysis Science and Technology</i> , 2020 , 10, 613-624	5.5	13
59	Designing new readily available sugar-based ligands for asymmetric transfer hydrogenation of ketones. In the quest to expand the substrate scope. <i>Tetrahedron Letters</i> , 2016 , 57, 1301-1308	2	13
58	Asymmetric Intermolecular Mizoroki-Heck Reaction: From Phosphine/Phosphinite-Nitrogen to Phosphite-Nitrogen Ligands. <i>Israel Journal of Chemistry</i> , 2012 , 52, 572-581	3.4	13
57	Screening of a modular sugar-based phosphoroamidite ligand library in the asymmetric nickel-catalyzed trialkylaluminium addition to aldehydes. <i>Tetrahedron: Asymmetry</i> , 2009 , 20, 1575-1579		13
56	PhosphiteBxazoline ligands for Rh-catalyzed asymmetric hydrosilylation of ketones. <i>Journal of Molecular Catalysis A</i> , 2006 , 249, 207-210		13
55	Synthesis, reactivity and catalytic properties of rhodium complexes of (R,R)-1-benzyl-3,4-dithioetherpyrrolidines. <i>Inorganica Chimica Acta</i> , 1999 , 295, 64-70	2.7	13
54	Giving a Second Chance to Ir/Sulfoximine-Based Catalysts for the Asymmetric Hydrogenation of Olefins Containing Poorly Coordinative Groups. <i>Journal of Organic Chemistry</i> , 2019 , 84, 8259-8266	4.2	12
53	Furanoside phosphitephosphoroamidite: new ligand class for the asymmetric nickel-catalyzed trialkylaluminium addition to aldehydes. <i>Tetrahedron Letters</i> , 2009 , 50, 4495-4497	2	12
52	Hydroformylation of oct-1-ene catalyzed by dinuclear gem-dithiolato-bridged rhodium(I) complexes and phosphorus donor ligands. <i>Journal of Molecular Catalysis A</i> , 2009 , 300, 121-131		12
51	Screening of modular sugar phosphite-oxazoline and phosphite-phosphoroamidite ligand libraries in the asymmetric nickel-catalyzed trialkylaluminium addition to aldehydes. <i>Inorganica Chimica Acta</i> , 2008 , 361, 1381-1384	2.7	12
50	Pyranoside phosphitephosphoroamidite ligands for Pd-catalyzed asymmetric allylic alkylation reactions. <i>Tetrahedron: Asymmetry</i> , 2006 , 17, 3282-3287		12
49	Asymmetric hydroformylation of vinyl arenes catalyzed by furanoside diphosphinites-Rh(I) complexes. <i>Applied Catalysis A: General</i> , 2005 , 282, 215-220	5.1	12
48	Rh-catalyzed asymmetric hydrogenation using a furanoside monophosphite second-generation ligand library: scope and limitations. <i>Tetrahedron: Asymmetry</i> , 2014 , 25, 258-262		11

47	Phosphite-Thiazoline versus Phosphite-Oxazoline for Pd-Catalyzed Allylic Substitution Reactions: A Case for Comparison. <i>ChemCatChem</i> , 2013 , 5, 1504-1516	5.2	11	
46	Evolution of phosphorus-thioether ligands for asymmetric catalysis. <i>Chemical Communications</i> , 2020 , 56, 10795-10808	5.8	11	
45	Third-Generation Amino Acid Furanoside-Based Ligands from d-Mannose for the Asymmetric Transfer Hydrogenation of Ketones: Catalysts with an Exceptionally Wide Substrate Scope. <i>Advanced Synthesis and Catalysis</i> , 2016 , 358, 4006-4018	5.6	11	
44	Synthesis, Application and Kinetic Studies of Chiral Phosphite-Oxazoline Palladium Complexes as Active and Selective Catalysts in Intermolecular Heck Reactions. <i>Advanced Synthesis and Catalysis</i> , 2018 , 360, 1650-1664	5.6	10	
43	Second-Generation Amino Acid Furanoside Based Ligands from D-Glucose for the Asymmetric Transfer Hydrogenation of Ketones. <i>ChemCatChem</i> , 2013 , 5, 3821-3828	5.2	10	
42	Enantioselective Ir-Catalyzed Hydrogenation of Minimally Functionalized Olefins Using Pyranoside Phosphinite-Oxazoline Ligands. <i>European Journal of Inorganic Chemistry</i> , 2013 , 2013, 2139-2145	2.3	10	
41	Sugar-monophosphite ligands applied to the asymmetric Ni-catalyzed trialkylaluminum addition to aldehydes. <i>Tetrahedron: Asymmetry</i> , 2011 , 22, 834-839		10	
40	Screening of a modular sugar-based phosphite ligand library in the Cu-catalyzed asymmetric 1,4-addition reactions. <i>Journal of Organometallic Chemistry</i> , 2007 , 692, 4315-4320	2.3	10	
39	Amino-P Ligands from Iminosugars: New Readily Available and Modular Ligands for Enantioselective Pd-Catalyzed Allylic Substitutions. <i>Organometallics</i> , 2018 , 37, 1682-1694	3.8	10	
38	Ir/Thioethertarbene, Phosphinite, and Phosphite Complexes for Asymmetric Hydrogenation. A Case for Comparison. <i>Organometallics</i> , 2019 , 38, 4193-4205	3.8	9	
37	Enantioselective Carbonylation Reactions65-92		9	
36	Effect of Ligand Chelation and Sacrificial Oxidant on the Integrity of Triazole-Based Carbene Iridium Water Oxidation Catalysts. <i>Inorganic Chemistry</i> , 2020 , 59, 12337-12347	5.1	9	
35	Pyrrolidine-Based P,O Ligands from Carbohydrates: Easily Accessible and Modular Ligands for the Ir-Catalyzed Asymmetric Hydrogenation of Minimally Functionalized Olefins. <i>ChemCatChem</i> , 2018 , 10, 5414-5424	5.2	9	
34	A readily accessible and modular carbohydrate-derived thioether/selenoether-phosphite ligand library for Pd-catalyzed asymmetric allylic substitutions. <i>Dalton Transactions</i> , 2019 , 48, 12632-12643	4.3	8	
33	Furanoside phosphitephosphoroamidite and diphosphoroamidite ligands applied to asymmetric Cu-catalyzed allylic substitution reactions. <i>Tetrahedron: Asymmetry</i> , 2012 , 23, 67-71		8	
32	Enantioselective Synthesis of Sterically Hindered Tertiary Aryl Oxindoles via Palladium-Catalyzed Decarboxylative Protonation. An Experimental and Theoretical Mechanistic Investigation. <i>Advanced Synthesis and Catalysis</i> , 2018 , 360, 3124-3137	5.6	8	
31	Evolution in heterodonor P-N, P-S and P-O chiral ligands for preparing efficient catalysts for asymmetric catalysis. From design to applications. <i>Coordination Chemistry Reviews</i> , 2021 , 446, 214120	23.2	8	
30	An Improved Class of Phosphite-Oxazoline Ligands for Pd-Catalyzed Allylic Substitution Reactions. <i>ACS Catalysis</i> , 2019 , 9, 6033-6048	13.1	7	

29	Rh-Catalyzed Asymmetric Hydroaminomethylation of Bubstituted Acrylamides: Application in the Synthesis of RWAY. <i>Organic Letters</i> , 2020 , 22, 9036-9040	6.2	7
28	C1-symmetric carbohydrate diphosphite ligands for asymmetric Pd-allylic alkylation reactions. Study of the key Pd-allyl intermediates. <i>Dalton Transactions</i> , 2011 , 40, 2852-60	4.3	7
27	Cationic iridium complexes with C2-symmetry binaphthalene-core disulfide ligands: Synthesis and catalytic activity in the hydrogenation of alkenes. <i>Inorganica Chimica Acta</i> , 2004 , 357, 2957-2964	2.7	7
26	Pd-catalyzed asymmetric allylic alkylation using furanoside diphosphinite ligands. <i>Inorganica Chimica Acta</i> , 2005 , 358, 3824-3828	2.7	7
25	Organometallic color chemistry: studies on [FcCH?CHC5H4NCH2C6H4(tBu)]X (X=BPh4[IClO4]] Journal of Organometallic Chemistry, 2000 , 608, 146-152	2.3	7
24	P-Stereogenic -Phosphine-Phosphite Ligands for the Rh-Catalyzed Hydrogenation of Olefins. <i>Journal of Organic Chemistry</i> , 2020 , 85, 4730-4739	4.2	6
23	Enantioselective Synthesis of 6,6-Disubstituted Pentafulvenes Containing a Chiral Pendant Hydroxy Group. <i>Chemistry - A European Journal</i> , 2017 , 23, 17195-17198	4.8	6
22	Furanoside phosphitephosphoroamidite and diphosphoroamidite ligands for Cu-catalyzed asymmetric 1,4-addition reactions. <i>Tetrahedron: Asymmetry</i> , 2009 , 20, 1930-1935		6
21	Asymmetric Carbonylations799-838		6
20	Cationic Iridium Complexes with Chiral Dithioether Ligands: Synthesis, Characterisation and Reactivity under Hydrogenation Conditions. <i>European Journal of Inorganic Chemistry</i> , 2005 , 2005, 2315-	2 3 23	6
19	Asymmetric Rh-catalyzed hydrogenation using a furanoside phosphite-phosphoroamidite and diphosphoroamidite ligand library. <i>Dalton Transactions</i> , 2012 , 41, 3038-45	4.3	5
18	Conjugate Addition of Organoaluminum Species to Michael Acceptors and Related Processes. <i>Topics in Organometallic Chemistry</i> , 2012 , 277-306	0.6	4
17	Phosphite Ligands in Asymmetric Hydrogenation. ACS Symposium Series, 2004, 161-173	0.4	4
16	Novel chiral dithioethers derived from l-tartaric acid. <i>Tetrahedron: Asymmetry</i> , 2001 , 12, 3029-3034		4
15	Synthesis and stereochemical study of new complexes of Pd and Pt with chiral dithioether ligands. <i>Dalton Transactions RSC</i> , 2000 , 4154-4159		4
14	Chiral Ligands		4
13	Carbohydrate-Derived Ligands in Asymmetric Heck Reactions 2013 , 245-251		3
12	Synthesis and structural studies of rhodium(I)-catalytic precursors containing two furanoside diphosphines. <i>Journal of Organometallic Chemistry</i> , 2001 , 629, 77-82	2.3	3

LIST OF PUBLICATIONS

11	Ir-Catalyzed Hydrogenation of Minimally Functionalized Olefins Using PhosphiteNitrogen Ligands 2012 , 153-165		2
10	Indene Derived Phosphorus-Thioether Ligands for the Ir-Catalyzed Asymmetric Hydrogenation of Olefins with Diverse Substitution Patterns and Different Functional Groups. <i>Advanced Synthesis and Catalysis</i> , 2021 , 363, 4561	5.6	2
9	Self-Adaptable Tropos Catalysts. Accounts of Chemical Research, 2021, 54, 3252-3263	24.3	2
8	Iridium-Catalyzed Asymmetric Hydrogenation. <i>Topics in Organometallic Chemistry</i> , 2020 , 153-205	0.6	1
7	Carbohydrate-Derived Ligands in Asymmetric Tsujillrost Reactions 2013 , 217-244		1
6	Proofreading experimentally assigned stereochemistry through Q2MM predictions in Pd-catalyzed allylic aminations. <i>Nature Communications</i> , 2021 , 12, 6719	17.4	1
5	Asymmetric hydrogenation in industry. Advances in Catalysis, 2021, 341-383	2.4	0
4	Density Functional Theory-Inspired Design of Ir/P,S-Catalysts for Asymmetric Hydrogenation of Olefins. <i>Organometallics</i> , 2021 , 40, 3424-3435	3.8	0
3	Hydrogenation Reactions 2013 , 155-182		
2	Cationic iridium complexes with C2-symmetry binaphthalene-core disulfide ligands. <i>Inorganica Chimica Acta</i> , 2004 , 357, 2957-2964	2.7	
1	Evolution in the metal-catalyzed asymmetric hydroformylation of 1,1?-disubstituted alkenes. <i>Advances in Catalysis</i> , 2021 , 69, 181-215	2.4	