Mohsen Shakouri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6439048/publications.pdf

Version: 2024-02-01

25 papers 1,671 citations

623734 14 h-index 25 g-index

26 all docs

26 docs citations

26 times ranked 1228 citing authors

#	Article	IF	CITATIONS
1	Anode-cathode interchangeable strategy for in situ reviving electrocatalysts' critical active sites for highly stable methanol upgrading and hydrogen evolution reactions. Applied Catalysis B: Environmental, 2022, 305, 121082.	20.2	21
2	Atomic-level coupled spinel@perovskite dual-phase oxides toward enhanced performance in Zn–air batteries. Journal of Materials Chemistry A, 2022, 10, 1506-1513.	10.3	28
3	Ligand Engineering in Nickel Phthalocyanine to Boost the Electrocatalytic Reduction of CO ₂ . Advanced Functional Materials, 2022, 32, .	14.9	80
4	A Highly Efficient Nickel Phosphate Electrocatalyst for the Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. ACS Sustainable Chemistry and Engineering, 2022, 10, 5538-5547.	6.7	12
5	Efficient and stable noble-metal-free catalyst for acidic water oxidation. Nature Communications, 2022, 13, 2294.	12.8	89
6	Molecular engineering to introduce carbonyl between nickel salophen active sites to enhance electrochemical CO2 reduction to methanol. Applied Catalysis B: Environmental, 2022, 314, 121451.	20.2	32
7	<scp>CO₂</scp> conversion through combined steam and <scp>CO₂</scp> reforming of methane reactions over Ni and Co catalysts. Canadian Journal of Chemical Engineering, 2021, 99, 153-165.	1.7	5
8	Enhanced arsenate removal by Fe-impregnated canola straw: assessment of XANES solid-phase speciation, impacts of solution properties, sorption mechanisms, and evolutionary polynomial regression (EPR) models. Environmental Science and Pollution Research, 2021, 28, 12659-12676.	5. 3	17
9	Insights into Bimetallic Oxide Synergy during Carbon Dioxide Hydrogenation to Methanol and Dimethyl Ether over GaZrO _{<i>x</i>} Oxide Catalysts. ACS Catalysis, 2021, 11, 4704-4711.	11.2	60
10	Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nature Communications, 2021, 12, 2870.	12.8	605
11	Co/MoN hetero-interface nanoflake array with enhanced water dissociation capability achieves the Pt-like hydrogen evolution catalytic performance. Applied Catalysis B: Environmental, 2021, 286, 119882.	20.2	109
12	General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nature Chemistry, 2021, 13, 887-894.	13.6	362
13	New Insights into the Highâ€Performance Black Phosphorus Anode for Lithiumâ€lon Batteries. Advanced Materials, 2021, 33, e2101259.	21.0	41
14	Bias-Adaptable CO ₂ -to-CO Conversion via Tuning the Binding of Competing Intermediates. Nano Letters, 2021, 21, 8924-8932.	9.1	13
15	Defect engineering on three-dimensionally ordered macroporous phosphorus doped Co3O4–δ microspheres as an efficient bifunctional electrocatalyst for Zn-air batteries. Energy Storage Materials, 2021, 41, 427-435.	18.0	47
16	Mechanistic insights into interfacial nano-synergistic effects in trimetallic Rh-on-NiCo on-CNTs for room temperature solvent-free hydrogenations. Applied Catalysis B: Environmental, 2021, 297, 120404.	20.2	9
17	A new trick for an old support: Stabilizing gold single atoms on LaFeO3 perovskite. Applied Catalysis B: Environmental, 2020, 261, 118178.	20.2	31
18	Development of a small-scale test facility for effectiveness evaluation of fixed-bed regenerators. Applied Thermal Engineering, 2020, 174, 115263.	6.0	19

#	Article	IF	CITATION:
19	Influence of calcination on physico-chemical properties and Ficher–Tropsch activity of titanosilicate supported cobalt catalysts with different pore sizes. Applied Catalysis A: General, 2020, 598, 117563.	4.3	4
20	Glovebox-integrated XES and XAS station for in situ studies in tender x-ray region. Electronic Structure, 2020, 2, 047001.	2.8	4
21	Towards designing reactive glasses for alkali activation: Understanding the origins of alkaline reactivity of Na-Mg aluminosilicate glasses. PLoS ONE, 2020, 15, e0244621.	2.5	6
22	Water Vapor Adsorption–Desorption Behavior of Surfactant-Coated Starch Particles for Commercial Energy Wheels. ACS Omega, 2019, 4, 14378-14389.	3.5	12
23	Development of shaped NiCoMg/γ–Al2O3 catalyst with commercial support for CO2 reforming of CH4. Catalysis Today, 2017, 291, 76-85.	4.4	3
24	Application of Ni-Co/Mg-Al Catalyst System for Hydrogen Production via Supercritical Water Gasification of Lignocellulosic Biomass. Catalysis Letters, 2016, 146, 2596-2605.	2.6	12
25	XANES and EXAFS studies on metal nanoparticle growth and bimetallic interaction of Ni-based catalysts for CO2 reforming of CH4. Catalysis Today, 2013, 207, 3-12.	4.4	50