
Samuele Lilliu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6438700/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mosaic Warfare and Human–Machine Symbiosis. , 2021, 1, 1-12.		4
2	Quantum Biology. , 2020, 1, 1-4.		1
3	Lattice strain causes non-radiative losses in halide perovskites. Energy and Environmental Science, 2019, 12, 596-606.	30.8	343
4	Perovskite LEDs. , 2019, 1, 1-5.		3
5	Degradation Kinetics of Inverted Perovskite Solar Cells. Scientific Reports, 2018, 8, 5977.	3.3	44
6	<i>In situ</i> simultaneous photovoltaic and structural evolution of perovskite solar cells during film formation. Energy and Environmental Science, 2018, 11, 383-393.	30.8	77
7	Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature, 2018, 555, 497-501.	27.8	1,336
8	Localized effect of PbI ₂ excess in perovskite solarÂcells probed by high-resolution chemical–optoelectronic mapping. Journal of Materials Chemistry A, 2018, 6, 23010-23018.	10.3	47
9	High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nature Photonics, 2018, 12, 783-789.	31.4	715
10	Dedoping of Lead Halide Perovskites Incorporating Monovalent Cations. ACS Nano, 2018, 12, 7301-7311.	14.6	101
11	The Path to Perovskite on Silicon PV. , 2018, 1, 1-8.		16
12	Mapping Morphological and Structural Properties of Lead Halide Perovskites by Scanning Nanofocus XRD. Advanced Functional Materials, 2016, 26, 8221-8230.	14.9	27
13	Grain rotation and lattice deformation during perovskite spray coating and annealing probed <i>in situ</i> by GI-WAXS. CrystEngComm, 2016, 18, 5448-5455.	2.6	29
14	Monitoring the Formation of a CH ₃ NH ₃ PbI _{3–} <i>_x</i> Cl <i>_x</i> Perovskite during Thermal Annealing Using Xâ€Ray Scattering. Advanced Functional Materials, 2016, 26, 4934-4942.	14.9	63
15	Detrimental Effect of Silicon Nanoparticles on P3HT:PCBM-Based OPV Devices. Macromolecular Chemistry and Physics, 2015, 216, 1155-1160.	2.2	5
16	Absence of Structural Impact of Noble Nanoparticles on P3HT:PCBM Blends for Plasmon-Enhanced Bulk-Heterojunction Organic Solar Cells Probed by Synchrotron GI-XRD. Scientific Reports, 2015, 5, 10633.	3.3	13
17	Transparency-switching optical element for sun tracking applications. Proceedings of SPIE, 2015, , .	0.8	0
18	Sun-tracking optical element realized using thermally activated transparency-switching material. Optics Express, 2015, 23, A930.	3.4	10

Samuele Lilliu

#	Article	IF	CITATIONS
19	Bimodal crystallization at polymer–fullerene interfaces. Physical Chemistry Chemical Physics, 2015, 17, 2216-2227.	2.8	22
20	X-ray imaging with scintillator-sensitized hybrid organic photodetectors. Nature Photonics, 2015, 9, 843-848.	31.4	300
21	Influence of Bridging Atom and Side Chains on the Structure and Crystallinity of Cyclopentadithiophene–Benzothiadiazole Polymers. Chemistry of Materials, 2014, 26, 1226-1233.	6.7	50
22	Quantifying charge carrier concentration in ZnO thin films by Scanning Kelvin Probe Microscopy. Scientific Reports, 2014, 4, 4203.	3.3	95
23	Oligo(aniline) nanofilms: from molecular architecture to microstructure. Soft Matter, 2013, 9, 10501.	2.7	24
24	EFM data mapped into 2D images of tip-sample contact potential difference and capacitance second derivative. Scientific Reports, 2013, 3, 3352.	3.3	15
25	2D directional surface strain mapping through distributed optical fiber sensors. , 2013, , .		0
26	Optofluidic approaches to stationary tracking optical concentrator systems. , 2013, , .		4
27	The Influence of Substrate and Top Electrode on the Crystallization Dynamics of P3HT: PCBM Blends. Energy Procedia, 2012, 31, 60-68.	1.8	8
28	Dynamics of Crystallization and Disorder during Annealing of P3HT/PCBM Bulk Heterojunctions. Macromolecules, 2011, 44, 2725-2734.	4.8	190
29	Surface and Bulk Structural Characterization of a High-Mobility Electron-Transporting Polymer. Macromolecules, 2011, 44, 1530-1539.	4.8	105
30	Inkjet-printed organic photodiodes. Thin Solid Films, 2011, 520, 610-615.	1.8	30
31	The role of alkane dithiols in controlling polymer crystallization in small band gap polymer:Fullerene solar cells. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 717-724.	2.1	73
32	Effects of Thermal Annealing Upon the Nanomorphology of Poly(3â€hexylselenophene)â€PCBM Blends. Macromolecular Rapid Communications, 2011, 32, 1454-1460.	3.9	17
33	Realâ€Time Investigation of Crystallization and Phaseâ€Segregation Dynamics in P3HT:PCBM Solar Cells During Thermal Annealing. Advanced Functional Materials, 2011, 21, 1701-1708.	14.9	207
34	The development of nanoscale morphology in polymer:fullerene photovoltaic blends during solvent casting. Soft Matter, 2010, 6, 4128.	2.7	121
35	Dependence of Charge Separation Efficiency on Film Microstructure in Poly(3-hexylthiophene-2,5-diyl):[6,6]-Phenyl-C ₆₁ Butyric Acid Methyl Ester Blend Films. Journal of Physical Chemistry Letters, 2010, 1, 734-738.	4.6	102