
Zhu-Ping Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/643860/publications.pdf Version: 2024-02-01

7HIL-PINC XIAO

#	Article	IF	CITATIONS
1	Polyphenols based on isoflavones as inhibitors of Helicobacter pylori urease. Bioorganic and Medicinal Chemistry, 2007, 15, 3703-3710.	3.0	123
2	Synthesis of Perfluorinated Isoquinolinediones through Visible-Light-Induced Cyclization of Alkenes. Journal of Organic Chemistry, 2015, 80, 12599-12605.	3.2	94
3	Design, synthesis, and evaluation of novel fluoroquinolone–flavonoid hybrids as potent antibiotics against drug-resistant microorganisms. European Journal of Medicinal Chemistry, 2014, 80, 92-100.	5.5	77
4	Synthesis, structure–activity relationship analysis and kinetics study of reductive derivatives of flavonoids as Helicobacter pylori urease inhibitors. European Journal of Medicinal Chemistry, 2013, 63, 685-695.	5.5	76
5	Synthesis, molecular docking and kinetic properties of β-hydroxy-β-phenylpropionyl-hydroxamic acids as Helicobacter pylori urease inhibitors. European Journal of Medicinal Chemistry, 2013, 68, 212-221.	5.5	75
6	The synthesis, structure and activity evaluation of pyrogallol and catechol derivatives as Helicobacter pylori urease inhibitors. European Journal of Medicinal Chemistry, 2010, 45, 5064-5070.	5.5	74
7	Tyrosyl-tRNA synthetase inhibitors as antibacterial agents: Synthesis, molecular docking and structure–activity relationship analysis of 3-aryl-4-arylaminofuran-2(5H)-ones. European Journal of Medicinal Chemistry, 2011, 46, 4904-4914.	5.5	70
8	Molecular Docking, Kinetics Study, and Structure–Activity Relationship Analysis of Quercetin and Its Analogous as <i>Helicobacter pylori</i> Urease Inhibitors. Journal of Agricultural and Food Chemistry, 2012, 60, 10572-10577.	5.2	67
9	Amines and oximes derived from deoxybenzoins as Helicobacter pylori urease inhibitors. European Journal of Medicinal Chemistry, 2009, 44, 2246-2251.	5.5	55
10	Novel 3-arylfuran-2(5H)-one-fluoroquinolone hybrid: Design, synthesis and evaluation as antibacterial agent. Bioorganic and Medicinal Chemistry, 2014, 22, 3620-3628.	3.0	47
11	3-Arylpropionylhydroxamic acid derivatives as Helicobacter pylori urease inhibitors: Synthesis, molecular docking and biological evaluation. Bioorganic and Medicinal Chemistry, 2016, 24, 4519-4527.	3.0	45
12	Arylamino containing hydroxamic acids as potent urease inhibitors for the treatment of Helicobacter pylori infection. European Journal of Medicinal Chemistry, 2018, 156, 126-136.	5.5	37
13	<i>N</i> -monoarylacetothioureas as potent urease inhibitors: synthesis, SAR, and biological evaluation. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 404-413.	5.2	37
14	Synthesis, structure, molecular docking, and structure–activity relationship analysis of enamines: 3-Aryl-4-alkylaminofuran-2(5H)-ones as potential antibacterials. Bioorganic and Medicinal Chemistry, 2011, 19, 1571-1579.	3.0	34
15	Synthesis, molecular docking and biological evaluation of 3-arylfuran-2(5H)-ones as anti-gastric ulcer agent. Bioorganic and Medicinal Chemistry, 2015, 23, 4860-4865.	3.0	25
16	Synthesis, structure, and structure–activity relationship analysis of enamines as potential antibacterials. Bioorganic and Medicinal Chemistry, 2007, 15, 4212-4219.	3.0	23
17	Enamines as novel antibacterials and their structure–activity relationships. European Journal of Medicinal Chemistry, 2008, 43, 1828-1836.	5.5	23
18	4-Alkoxy-3-arylfuran-2(5H)-ones as inhibitors of tyrosyl-tRNA synthetase: Synthesis, molecular docking and antibacterial evaluation. Bioorganic and Medicinal Chemistry, 2011, 19, 3884-3891.	3.0	22

ZHU-PING XIAO

#	Article	IF	CITATIONS
19	Synthesis, Antiproliferative Activity, and Structure–Activity Relationships of 3â€Arylâ€l <i>H</i> â€quinolinâ€4â€ones. ChemMedChem, 2008, 3, 1077-1082.	3.2	20
20	Synthesis, Antiproliferative Evaluation, and Structure–Activity Relationships of 3â€Arylquinolines. ChemMedChem, 2008, 3, 1516-1519.	3.2	20
21	Synthesis, crystal structure, and growth inhibition of human hepatoma cell (HepG2) of polyphenolic compounds based on gallates. Canadian Journal of Chemistry, 2007, 85, 951-957.	1.1	19
22	3-Aryl-4-acyloxyethoxyfuran-2(5H)-ones as inhibitors of tyrosyl-tRNA synthetase: Synthesis, molecular docking and antibacterial evaluation. Bioorganic and Medicinal Chemistry, 2013, 21, 4914-4922.	3.0	18
23	Recent Efforts in the Discovery of Urease Inhibitor Identifications. Current Topics in Medicinal Chemistry, 2022, 22, 95-107.	2.1	18
24	Synthesis and evaluation of N-analogs of 1,2-diarylethane as Helicobacter pylori urease inhibitors. Bioorganic and Medicinal Chemistry, 2015, 23, 4508-4513.	3.0	17
25	The synthesis and evaluation of phenoxyacylhydroxamic acids as potential agents for Helicobacter pylori infections. Bioorganic and Medicinal Chemistry, 2018, 26, 4145-4152.	3.0	17
26	Identification, potency evaluation, and mechanism clarification of α-glucosidase inhibitors from tender leaves of Lithocarpus polystachyus Rehd. Food Chemistry, 2022, 371, 131128.	8.2	17
27	Efficient Reducing System Based on Iron for Conversion of Nitroarenes to Anilines. Synthetic Communications, 2010, 40, 661-665.	2.1	16
28	<i>N</i> -monosubstituted thiosemicarbazide as novel UreÂinhibitors: synthesis, biological evaluation and molecular docking. Future Medicinal Chemistry, 2020, 12, 1633-1645.	2.3	15
29	Synthesis and Crystal Structures of Complex [N′-(3,5-Dibromo-2-Oxidobenzylidene-κO)-2-Hydroxy-3-Methylbenzohydrazidato-κ 2 N′,O](Methanol-κO)(Methanolato-κO)Oxidovanadium(V). Journal of Chemical Crystallography, 2011, 41,	1.1	11
30	Synthesis and evaluation of new tyrosyl-tRNA synthetase inhibitors as antibacterial agents based on a N2-(arylacetyl)glycinanilide scaffold. European Journal of Medicinal Chemistry, 2015, 102, 631-638.	5.5	10
31	Resolution and evaluation of 3-chlorophenyl-3-hydroxypropionylhydroxamic acid as antivirulence agent with excellent eradication efficacy in Helicobacter pylori infected mice. European Journal of Pharmaceutical Sciences, 2018, 121, 293-300.	4.0	10
32	Synthesis and Structure-Activity Relationship Studies of <i>N</i> -monosubstituted Aroylthioureas as Urease Inhibitors. Medicinal Chemistry, 2021, 17, 1046-1059.	1.5	10
33	Adenosine analogs as inhibitors of tyrosyl-tRNA synthetase: Design, synthesis and antibacterial evaluation. Bioorganic and Medicinal Chemistry, 2015, 23, 6602-6611.	3.0	9
34	Synthesis and evaluation of adenosine containing 3-arylfuran-2(5 H)-ones as tyrosyl-tRNA synthetase inhibitors. European Journal of Medicinal Chemistry, 2017, 133, 62-68.	5.5	7
35	Synthesis and Biological Evaluation of Dithiobisacetamides as Novel Urease Inhibitors. ChemMedChem, 2022, 17, .	3.2	7
36	Synthesis and Structure - Activity Relationship Analysis of Enamines as Potential Antibacterial Agents. Australian Journal of Chemistry, 2007, 60, 957.	0.9	5

ZHU-PING XIAO

#	Article	IF	CITATIONS
37	2-(4-Bromophenyl)-N-(2-methoxyphenyl)acetamide. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, 067-067.	0.2	5
38	Modification of MTT Assay for Precision and Repeatability and Its Mechanistic Implication. Asian Journal of Chemistry, 2014, 26, 8015-8018.	0.3	4
39	The Synthesis and Crystal Determination of 3-Hydroxy-4-(4-methoxyphenyl)-5-(2-nitrophenyl)furan-2(5H)-one. Journal of Chemical Crystallography, 2011, 41, 649-653.	1.1	3
40	C-7 modified flavonoids as novel tyrosyl-tRNA synthetase inhibitors. RSC Advances, 2017, 7, 6193-6201.	3.6	3
41	1-(2-Hydroxy-3,4-dimethoxyphenyl)-2-(4-methoxyphenyl)ethanone. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o2324-o2324.	0.2	2
42	Structure and Antibacterial Activity of 3-(3,4-Dimethoxyphenyl)furan-2(5H)-ones. Journal of Chemical Crystallography, 2012, 42, 323-329.	1.1	2
43	(Z)-Ethyl 2-(4-chlorophenyl)-3-[(2,4-difluorophenyl)amino]prop-2-enoate. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o3016-o3016.	0.2	1
44	3-(4-Bromophenyl)-4-[2-(4-nitrophenyl)hydrazinyl]furan-2(5H)-one. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o3086-o3086.	0.2	1
45	7-Methoxy-3-(4-methoxyphenyl)chroman-4-one. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o250-o250.	0.2	1
46	Ethyl 2-(3-amino-4-hydroxyphenyl)acetate. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o3069-o3069.	0.2	0
47	3-(2-Bromoethoxy)-4-(4-bromophenyl)furan-5(2H)-one. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o3068-o3068.	0.2	0
48	The Crystal Structures of (Z)-Ethyl 2-(4-chlorophenyl)-3-(2,4-difluorophenyl-amino)acrylate and its Analogues. Journal of Chemical Crystallography, 2011, 41, 1214-1217.	1.1	0
49	4-(2-Chloroanilino)-3-phenylfuran-2(5H)-one. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o3091-o3091.	0.2	0
50	3-(4-Hydroxyphenyl)-7-methoxychroman-4-one monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o3212-o3212.	0.2	0
51	3-(2-Chlorophenyl)-4-hydroxyfuran-2(5H)-one. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o3428-o3428.	0.2	0
52	Synthesis, Crystal Structures, and Antifungal Activities of Complex [N'-(3,5-Dichloro-2-oxidobenzylidene-κO)-2-hydroxy-3-methylbenzohydrazidato-κ 2 N',O](methanol-κO)(methanolato-κO)oxidovanadium(V). Synthesis and Reactivity in Inorganic, Metal	0.6	0
53	Organic, and Nano Metal Chemistry, 2011, 41, 1102-1107. (Z)-Ethyl 3-(2,4-difluoroanilino)-2-(4-methoxyphenyl)acrylate. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o2371-o2371.	0.2	0
54	(E)-2-(4-Methoxyphenyl)-N-(2-pyridyl)-3-(2-pyridylamino)acrylamide. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o672-o672.	0.2	0