
Ritesh Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/643829/publications.pdf Version: 2024-02-01

RITESH KIIMAD

#	Article	IF	CITATIONS
1	High-Entropy Alloys as Catalysts for the CO ₂ and CO Reduction Reactions: Experimental Realization. ACS Catalysis, 2020, 10, 3658-3663.	11.2	244
2	C2N/WS2 van der Waals type-II heterostructure as a promising water splitting photocatalyst. Journal of Catalysis, 2018, 359, 143-150.	6.2	229
3	A Non-van der Waals Two-Dimensional Material from Natural Titanium Mineral Ore Ilmenite. Chemistry of Materials, 2018, 30, 5923-5931.	6.7	82
4	Low-cost high entropy alloy (HEA) for high-efficiency oxygen evolution reaction (OER). Nano Research, 2022, 15, 4799-4806.	10.4	80
5	Noble-Metal-Free Heterojunction Photocatalyst for Selective CO ₂ Reduction to Methane upon Induced Strain Relaxation. ACS Catalysis, 2022, 12, 687-697.	11.2	56
6	Nanostructured Tungsten Oxysulfide as an Efficient Electrocatalyst for Hydrogen Evolution Reaction. ACS Catalysis, 2020, 10, 6753-6762.	11.2	43
7	Multi-component (Ag–Au–Cu–Pd–Pt) alloy nanoparticle-decorated p-type 2D-molybdenum disulfide (MoS ₂) for enhanced hydrogen sensing. Nanoscale, 2020, 12, 11830-11841.	5.6	42
8	Chemical hardness-driven interpretable machine learning approach for rapid search of photocatalysts. Npj Computational Materials, 2021, 7, .	8.7	40
9	Inner Sphere Electron Transfer Promotion on Homogeneously Dispersed Fe-N <i>_x</i> Centers for Energy-Efficient Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2020, 12, 36026-36039.	8.0	39
10	Formic acid and methanol electro-oxidation and counter hydrogen production using nano high entropy catalyst. Materials Today Energy, 2020, 16, 100393.	4.7	38
11	Rational Design of Single-Atom Catalysts for Enhanced Electrocatalytic Nitrogen Reduction Reaction. Journal of Physical Chemistry C, 2021, 125, 12585-12593.	3.1	20
12	Electronic Structure Based Intuitive Design Principle of Singleâ€Atom Catalysts for Efficient Electrolytic Nitrogen Reduction. ChemCatChem, 2020, 12, 5456-5464.	3.7	16
13	Electroreduction of Carbon Dioxide into Selective Hydrocarbons at Low Overpotential Using Isomorphic Atomic Substitution in Copper Oxide. ACS Sustainable Chemistry and Engineering, 2020, 8, 179-189.	6.7	11
14	Growth of highly crystalline ultrathin two-dimensional selenene. 2D Materials, 2022, 9, 045004.	4.4	8
15	Topological Phases in Hydrogenated Group 13 Monolayers. Journal of Physical Chemistry C, 2019, 123, 25985-25990.	3.1	4
16	Critical Sublattice Symmetry Breaking: A Universal Criterion for Dirac Cone Splitting. Journal of Physical Chemistry C, 2019, 123, 23082-23088.	3.1	2