
Marc Redmile-Gordon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6438203/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Perspectives on ecological risks of microplastics and phthalate acid esters in crop production systems. Soil Ecology Letters, 2022, 4, 97-108.	4.5	11
2	Influence of surface coatings on the adhesion of Shewanella oneidensis MR-1 to hematite. Journal of Colloid and Interface Science, 2022, 608, 2955-2963.	9.4	9
3	Importance of substrate quality and clay content on microbial extracellular polymeric substances production and aggregate stability in soils. Biology and Fertility of Soils, 2022, 58, 435-457.	4.3	24
4	Artificially intelligent soil quality and health indices for â€~next generation' food production systems Trends in Food Science and Technology, 2021, 107, 195-200.	15.1	9
5	Organic and inorganic model soil fractions instigate the formation of distinct microbial biofilms for enhanced biodegradation of benzo[a]pyrene. Journal of Hazardous Materials, 2021, 404, 124071.	12.4	21
6	Risk Assessment of Agricultural Plastic Films Based on Release Kinetics of Phthalate Acid Esters. Environmental Science & Technology, 2021, 55, 3676-3685.	10.0	70
7	Rhizosphere microbiome modulated effects of biochar on ryegrass 15N uptake and rhizodeposited 13C allocation in soil. Plant and Soil, 2021, 463, 359-377.	3.7	17
8	Amendment with biodiesel co-product modifies genes for N cycling (nirK, nirS, nosZ) and greenhouse gas emissions (N2O, CH4, CO2) from an acid soil. Biology and Fertility of Soils, 2021, 57, 629-642.	4.3	8
9	Response to Letter to the Editor—"Soil biofilms― Misleading description of the spatial distribution of microbial biomass in soils. Soil Ecology Letters, 2020, 2, 6-7.	4.5	0
10	Soil biofilms: microbial interactions, challenges, and advanced techniques for ex-situ characterization. Soil Ecology Letters, 2019, 1, 85-93.	4.5	62
11	Reducing plant uptake of a brominated contaminant (2,2′,4,4′‑tetrabrominated diphenyl ether) by incorporation of maize straw into horticultural soil. Science of the Total Environment, 2019, 663, 29-37.	8.0	10
12	Changes in nitrogen related functional genes along soil pH, C and nutrient gradients in the charosphere. Science of the Total Environment, 2019, 650, 626-632.	8.0	61
13	Extracellular polymeric substances (EPS) modulate adsorption isotherms between biochar and 2,2′,4,4′-tetrabromodiphenyl ether. Chemosphere, 2019, 214, 176-183.	8.2	28
14	Aliphatic Hydrocarbon Enhances Phenanthrene Degradation by Autochthonous Prokaryotic Communities from a Pristine Seawater. Microbial Ecology, 2018, 75, 688-700.	2.8	10
15	Differences in bacterial composition between men's and women's restrooms and other common areas within a public building. Antonie Van Leeuwenhoek, 2018, 111, 551-561.	1.7	9
16	Effects of cropping systems upon the three-dimensional architecture of soil systems are modulated by texture. Geoderma, 2018, 332, 73-83.	5.1	51
17	<i>Mortierella elongata</i> 's roles in organic agriculture and crop growth promotion in a mineral soil. Land Degradation and Development, 2018, 29, 1642-1651.	3.9	130
18	BTW—Bioinformatics Through Windows: an easy-to-install package to analyze marker gene data. PeerJ, 2018. 6. e5299.	2.0	13

#	Article	IF	CITATIONS
19	Zinc toxicity stimulates microbial production of extracellular polymers in a copiotrophic acid soil. International Biodeterioration and Biodegradation, 2017, 119, 413-418.	3.9	18
20	Sequestration of C in soils under Miscanthus can be marginal and is affected by genotype-specific root distribution. Agriculture, Ecosystems and Environment, 2015, 200, 169-177.	5.3	40