
Sasan Zandi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6438154/publications.pdf Version: 2024-02-01

SASAN ZANDI

#	Article	IF	CITATIONS
1	Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature, 2014, 506, 328-333.	27.8	1,241
2	Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science, 2016, 351, aab2116.	12.6	597
3	Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5465-5470.	7.1	578
4	CDK6 Levels Regulate Quiescence Exit in Human Hematopoietic Stem Cells. Cell Stem Cell, 2015, 16, 302-313.	11.1	247
5	The evolution of cellular deficiency in GATA2 mutation. Blood, 2014, 123, 863-874.	1.4	189
6	The transcriptional architecture of early human hematopoiesis identifies multilevel control of lymphoid commitment. Nature Immunology, 2013, 14, 756-763.	14.5	188
7	Efficacy of Retinoids in IKZF1-Mutated BCR-ABL1 Acute Lymphoblastic Leukemia. Cancer Cell, 2015, 28, 343-356.	16.8	145
8	EBF1 Is Essential for B-Lineage Priming and Establishment of a Transcription Factor Network in Common Lymphoid Progenitors. Journal of Immunology, 2008, 181, 3364-3372.	0.8	125
9	Gene Deregulation and Chronic Activation in Natural Killer Cells Deficient in the Transcription Factor ETS1. Immunity, 2012, 36, 921-932.	14.3	118
10	Truncating Erythropoietin Receptor Rearrangements in Acute Lymphoblastic Leukemia. Cancer Cell, 2016, 29, 186-200.	16.8	118
11	Single-cell analysis of the common lymphoid progenitor compartment reveals functional and molecular heterogeneity. Blood, 2010, 115, 2601-2609.	1.4	113
12	Cytokines regulate postnatal hematopoietic stem cell expansion: opposing roles of thrombopoietin and LNK. Genes and Development, 2006, 20, 2018-2023.	5.9	110
13	B-lineage commitment prior to surface expression of B220 and CD19 on hematopoietic progenitor cells. Blood, 2008, 112, 1048-1055.	1.4	72
14	The Transition from Quiescent to Activated States in Human Hematopoietic Stem Cells Is Governed by Dynamic 3D Genome Reorganization. Cell Stem Cell, 2021, 28, 488-501.e10.	11.1	51
15	p38 Mitogen-Activated Protein Kinase/Signal Transducer and Activator of Transcription-3 Pathway Signaling Regulates Expression of Inhibitory Molecules in T Cells Activated by HIV-1-Exposed Dendritic Cells. Molecular Medicine, 2012, 18, 1169-1182.	4.4	40
16	Identification of genes expressed by immune cells of the colon that are regulated by colorectal cancerâ€associated variants. International Journal of Cancer, 2014, 134, 2330-2341.	5.1	38
17	A doseâ€dependent role for EBF1 in repressing nonâ€Bâ€cellâ€specific genes. European Journal of Immunology, 2011, 41, 1787-1793.	2.9	33
18	Single-cell analysis of early B-lymphocyte development suggests independent regulation of lineage specification and commitment in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15871-15876.	7.1	31

Sasan Zandi

#	Article	IF	CITATIONS
19	Interleukin-7-induced Stat-5 Acts in Synergy with Flt-3 Signaling to Stimulate Expansion of Hematopoietic Progenitor Cells. Journal of Biological Chemistry, 2010, 285, 36275-36284.	3.4	28
20	Aging, clonal hematopoiesis and preleukemia: not just bad luck?. International Journal of Hematology, 2015, 102, 513-522.	1.6	27
21	A latent subset of human hematopoietic stem cells resists regenerative stress to preserve stemness. Nature Immunology, 2021, 22, 723-734.	14.5	26
22	Ectopic expression of PAX5 promotes maintenance of biphenotypic myeloid progenitors coexpressing myeloid and B-cell lineage-associated genes. Blood, 2007, 109, 3697-3705.	1.4	25
23	A stemness screen reveals C3orf54/INKA1 as a promoter of human leukemia stem cell latency. Blood, 2019, 133, 2198-2211.	1.4	25
24	Load and lock: the molecular mechanisms of Bâ€lymphocyte commitment. Immunological Reviews, 2010, 238, 47-62.	6.0	19
25	Genomics based analysis of interactions between developing B-lymphocytes and stromal cells reveal complex interactions and two-way communication. BMC Genomics, 2010, 11, 108.	2.8	8
26	Cellular and molecular architecture of hematopoietic stem cells and progenitors in genetic models of bone marrow failure. JCI Insight, 2020, 5, .	5.0	6
27	DNMT3a Mutations Define a Pre-Leukemic Stem Cell Reservoir In Human Acute Myeloid Leukemia. Blood, 2013, 122, 487-487.	1.4	4
28	The Road to Commitment: Lineage Restriction Events in Hematopoiesis. , 2009, , 23-46.		2
29	Resolution of celiac disease, IgA deficiency and platelet refractoriness after allogeneic bone marrow transplantation for acute leukemia. Haematologica, 2019, 104, e121-e123.	3.5	1
30	CD200 Is a Marker of LSC Activity in Acute Myeloid Leukemia. Blood, 2016, 128, 1705-1705.	1.4	1
31	Molecular and Functional Characterization of Early Lineage Commitment of Human Hematopoietic Stem Cells. Blood, 2011, 118, 907-907.	1.4	1
32	Engraftment Patterns in NOD.SCID Mice Predict Outcome in Human AML. Blood, 2014, 124, 16-16.	1.4	1
33	IL7 Counteraction with Notch Signaling Followed by EBF1 Expression Marks the B-Cell Commitment in CLP Stage. Blood, 2008, 112, 2452-2452.	1.4	0
34	Temporal and Sequential Expression of EBF1 and PAX5 Restricts the Non-B Cell Fate In Early Lymphopoiesis. Blood, 2010, 116, 3867-3867.	1.4	0
35	Deep Phenotypic Characterization of Primitive Stem and Progenitor Compartments Reveals the Cellular Architecture of Aplastic Anemia Blood, 2012, 120, 2370-2370.	1.4	0
36	The Human Blood Hierarchy Is Shaped By Distinct Progenitor Lineages Across Development. Blood, 2015, 126, 2360-2360.	1.4	0

#	Article	IF	CITATIONS
37	Distinct Regulatory Networks Govern Human Hematopoietic Stem Cell Across Development. Blood, 2015, 126, 2375-2375.	1.4	0
38	Chromatin Accessibility Identifies CTCF As a Gatekeeper of Stemness Functions in Human Hematopoietic Development. Blood, 2016, 128, 3873-3873.	1.4	0
39	Sphingolipids Regulate Myeloid-Erythroid Fate Determination in Human Hematopoiesis. Blood, 2016, 128, 3865-3865.	1.4	0