Marianne Richou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6438046/publications.pdf

Version: 2024-02-01

104 papers 2,098 citations

257450 24 h-index 276875
41
g-index

104 all docs

104 docs citations

104 times ranked 1325 citing authors

#	Article	IF	CITATIONS
1	Materials for in-vessel components. Fusion Engineering and Design, 2022, 174, 112994.	1.9	23
2	Divertor of the European DEMO: Engineering and technologies for power exhaust. Fusion Engineering and Design, 2022, 175, 113010.	1.9	47
3	First plasma exposure of a pre-damaged ITER-like plasma-facing unit in the WEST tokamak: procedure for the PFU preparation and lessons learned. Nuclear Fusion, 2022, 62, 056010.	3.5	5
4	Competition between recovery and recrystallization in two tungsten supplies according to ITER specifications. Journal of Materials Science, 2022, 57, 7729-7746.	3.7	4
5	Reception tests of the WEST PFUs using ultrasonic testing and infrared thermography. Nuclear Materials and Energy, 2022, 32, 101210.	1.3	1
6	T-REX: numerical tool for tungsten damage assessment for DEMO. Journal of Nuclear Materials, 2022, , 153906.	2.7	1
7	Flush-mounted Langmuir probes in the WEST tokamak divertor. Fusion Engineering and Design, 2021, 163, 112120.	1.9	21
8	High-heat-flux technologies for the European demo divertor targets: State-of-the-art and a review of the latest testing campaign. Journal of Nuclear Materials, 2021, 544, 152670.	2.7	36
9	Design and integration of femtosecond Fiber Bragg gratings temperature probes inside actively cooled ITER-like plasma-facing components. Fusion Engineering and Design, 2021, 166, 112376.	1.9	8
10	Thermal loads in gaps between ITER divertor monoblocks: First lessons learnt from WEST. Nuclear Materials and Energy, 2021, 27, 100920.	1.3	13
11	Numerical study of the influence of tungsten recrystallization on the divertor component lifetime. International Journal of Fracture, 2021, 230, 83.	2.2	3
12	Technology readiness assessment of materials for DEMO in-vessel applications. Journal of Nuclear Materials, 2021, 550, 152906.	2.7	12
13	Acceptance tests of the industrial series manufacturing of WEST ITER-like tungsten actively cooled divertor. Physica Scripta, 2021, 96, 124029.	2.5	10
14	In situ observation of tungsten plasma-facing components after the first phase of operation of the WEST tokamak. Nuclear Fusion, 2021, 61, 106011.	3.5	18
15	Grain growth and damages induced by transient heat loads on W. Physica Scripta, 2021, 96, 124032.	2.5	2
16	First feedback during series fabrication of ITER like divertor tungsten components for the WEST tokamak. Physica Scripta, 2021, 96, 124037.	2.5	6
17	Erosion and redeposition patterns on entire erosion marker tiles after exposure in the first operation phase of WEST. Physica Scripta, 2021, 96, 124020.	2.5	20
18	Evaluation of tensile and elastic properties of W/Cu cold-spray coatings for application to the FGM DEMO divertor concept. Fusion Engineering and Design, 2021 , 171 , 112719 .	1.9	5

#	Article	IF	CITATIONS
19	An Attempt to Assess Recovery/Recrystallization Kinetics in Tungsten at High Temperature Using Statistical Nanoindentation Analysis. Crystals, 2021, 11, 37.	2.2	7
20	Sustained W-melting experiments on actively cooled ITER-like plasma facing unit in WEST. Physica Scripta, 2021, 96, 124057.	2.5	19
21	Typology of defects in DEMO divertor target mockups. Physica Scripta, 2021, 96, 124065.	2.5	2
22	Ultrasonic test results before and after high heat flux testing on W-monoblock mock-ups of EU-DEMO vertical target. Fusion Engineering and Design, 2020, 160, 111886.	1.9	9
23	Recrystallization at high temperature of two tungsten materials complying with the ITER specifications. Journal of Nuclear Materials, 2020, 542, 152418.	2.7	25
24	Performance assessment of thick W/Cu graded interlayer for DEMO divertor target. Fusion Engineering and Design, 2020, 157, 111610.	1.9	23
25	Assessment of the high heat flux performance of European DEMO divertor mock-ups. Physica Scripta, 2020, T171, 014003.	2.5	7
26	A high power laser facility to conduct annealing tests at high temperature. Review of Scientific Instruments, 2020, 91, 035102.	1.3	15
27	Emissivity measurement of tungsten plasma facing components of the WEST tokamak. Fusion Engineering and Design, 2019, 149, 111328.	1.9	32
28	Tungsten coatings repair: An approach to increase the lifetime of plasma facing components. Fusion Engineering and Design, 2019, 146, 800-804.	1.9	8
29	High heat flux test results for a thermal break DEMO divertor target and subsequent design and manufacture development. Fusion Engineering and Design, 2019, 146, 1657-1660.	1.9	10
30	Inverse identification of tungsten static recrystallization kinetics under high thermal flux. Fusion Engineering and Design, 2019, 146, 1759-1763.	1.9	7
31	Ultrasonic analysis of tungsten monoblock divertor mock-ups after high heat flux test. Fusion Engineering and Design, 2019, 146, 870-873.	1.9	10
32	Performance assessment of high heat flux W monoblock type target using thin graded and copper interlayers for application to DEMO divertor. Fusion Engineering and Design, 2019, 146, 858-861.	1.9	7
33	Impact of tungsten recrystallization on ITER-like components for lifetime estimation. Fusion Engineering and Design, 2019, 138, 247-253.	1.9	30
34	Progress in high heat flux testing of European DEMO divertor mock-ups. Fusion Engineering and Design, 2019, 146, 216-219.	1.9	17
35	Qualification and post-mortem investigation of actively cooled tungsten flat-tile mock-ups for WEST divertor. Fusion Engineering and Design, 2018, 136, 403-409.	1.9	7
36	European divertor target concepts for DEMO: Design rationales and high heat flux performance. Nuclear Materials and Energy, 2018, 16, 1-11.	1.3	101

#	Article	IF	CITATIONS
37	Manufacturing and testing of ITER-like divertor plasma facing mock-ups for DEMO. Fusion Engineering and Design, 2018, 136, 1593-1596.	1.9	19
38	Effect of induction heating on flaw generation and expansion. Fusion Engineering and Design, 2018, 136, 1273-1277.	1.9	2
39	Status on the W monoblock type high heat flux target with graded interlayer for application to DEMO divertor. Fusion Engineering and Design, 2017, 124, 338-343.	1.9	15
40	Overview of the different processes of tungsten coating implemented into WEST tokamak. Fusion Engineering and Design, 2017, 124, 207-210.	1.9	20
41	Potential approach of IR-analysis for high heat flux quality assessment of divertor tungsten monoblock components. Fusion Engineering and Design, 2017, 124, 202-206.	1.9	6
42	Fracture mechanical analysis of a tungsten monoblock-type plasma-facing component without macroscopic interlayer for high-heat-flux divertor target. Fusion Engineering and Design, 2017, 122, 124-130.	1.9	11
43	Overview of decade-long development of plasma-facing components at ASIPP. Nuclear Fusion, 2017, 57, 065001.	3.5	71
44	Quantitative thermal imperfection definition using non-destructive infrared thermography on an advanced DEMO divertor concept. Physica Scripta, 2017, T170, 014015.	2.5	12
45	The development and testing of the thermal break divertor monoblock target design delivering 20 MW m ^{â^2} heat load capability. Physica Scripta, 2017, T170, 014042.	2.5	25
46	Results of high heat flux qualification tests of W monoblock components for WEST. Physica Scripta, 2017, T170, 014001.	2.5	6
47	Realization of high heat flux tungsten monoblock type target with graded interlayer for application to DEMO divertor. Physica Scripta, 2017, T170, 014022.	2.5	19
48	Plasmaâ€"wall interaction studies within the EUROfusion consortium: progress on plasma-facing components development and qualification. Nuclear Fusion, 2017, 57, 116041.	3.5	75
49	Results of high heat flux qualification tests of W monoblock components for WEST. Physica Scripta, 2017, T170, 014001.	2.5	0
50	The WEST project: validation program for WEST tungsten coated plasma facing components. Physica Scripta, 2016, T167, 014029.	2.5	4
51	A fatigue lifetime assessment of WEST ITER Like Plasma Facing Unit. Fusion Engineering and Design, 2016, 109-111, 294-298.	1.9	3
52	Thermomechanical simulation of WEST actively cooled upper divertor. Fusion Engineering and Design, 2016, 112, 36-41.	1.9	2
53	Evaluation of peak power flux densities based on full ion orbit calculation: Application to WEST ITER-like target. Fusion Engineering and Design, 2016, 112, 1-6.	1.9	0
54	Thermal transport properties of multiphase sintered metals microstructures. The copper-tungsten system: Experiments and modeling. Journal of Applied Physics, 2016, 119, 145104.	2.5	8

#	Article	IF	CITATIONS
55	Tungsten covered graphite and copper elements and ITER-like actively cooled tungsten divertor plasma facing units for the WEST project. Physica Scripta, 2016, T167, 014066.	2.5	3
56	Conceptual design studies for the European DEMO divertor: Rationale and first results. Fusion Engineering and Design, 2016, 109-111, 1598-1603.	1.9	108
57	European DEMO divertor target: Operational requirements and material-design interface. Nuclear Materials and Energy, 2016, 9, 171-176.	1.3	119
58	Operational limits on WEST inertial divertor sector during the early phase experiment. Physica Scripta, 2016, T167, 014012.	2.5	8
59	Recent Progress in the Development of Helium-Cooled Divertor for DEMO. Fusion Science and Technology, 2015, 67, 732-744.	1.1	8
60	Experimental study of the thermal conductivity of sintered tungsten: Evidence of a critical behaviour with porosity. Applied Physics Letters, 2015, 107, .	3.3	15
61	Heat flux depositions on the WEST divertor and first wall components. Fusion Engineering and Design, 2015, 98-99, 1294-1298.	1.9	24
62	Design and preliminary thermal validation of the WEST actively cooled upper divertor. Fusion Engineering and Design, 2015, 98-99, 1394-1398.	1.9	14
63	Design study of ITER-like divertor target for DEMO. Fusion Engineering and Design, 2015, 98-99, 1263-1266.	1.9	25
64	Design and manufacturing of WEST Baffle. Fusion Engineering and Design, 2015, 98-99, 1221-1225.	1.9	5
65	Elaboration and thermomechanical characterization of W/Cu functionally graded materials produced by Spark Plasma Sintering for plasma facing components. Fusion Engineering and Design, 2015, 98-99, 1929-1932.	1.9	24
66	Plasma facing components integration studies for the WEST divertor. Fusion Engineering and Design, 2015, 98-99, 1285-1289.	1.9	8
67	Spark plasma sintering of pure and doped tungsten as plasma facing material. Physica Scripta, 2014, T159, 014034.	2.5	25
68	Design of a water cooled monoblock divertor for DEMO using Eurofer as structural material. Fusion Engineering and Design, 2014, 89, 975-980.	1.9	19
69	The WEST project: Testing ITER divertor high heat flux component technology in a steady state tokamak environment. Fusion Engineering and Design, 2014, 89, 907-912.	1.9	172
70	The WEST project: Current status of the ITER-like tungsten divertor. Fusion Engineering and Design, 2014, 89, 1048-1053.	1.9	62
71	Design optimization of plasma facing component with functional gradient material Cu/W interlayer. Fusion Engineering and Design, 2013, 88, 1714-1717.	1.9	11
72	Non-destructive examination of the bonding interface in DEMO divertor fingers. Fusion Engineering and Design, 2013, 88, 1753-1757.	1.9	3

#	Article	IF	CITATIONS
73	Assessment of an ITER-like water-cooled divertor for DEMO. , 2013, , .		1
74	Improvement of non destructive infrared test bed SATIR for examination of actively cooled tungsten armour Plasma Facing Components. Fusion Engineering and Design, 2013, 88, 1818-1822.	1.9	17
75	Potential and limits of water cooled divertor concepts based on monoblock design as possible candidates for a DEMO reactor. Fusion Engineering and Design, 2013, 88, 1836-1843.	1.9	60
76	Critical heat flux acoustic detection: Methods and application to ITER divertor vertical target monitoring. Fusion Engineering and Design, 2013, 88, 1722-1726.	1.9	5
77	The WEST project: PFC shaping solutions investigated for the ITER-like W divertor. Fusion Engineering and Design, 2013, 88, 1793-1797.	1.9	19
78	Developments Toward Fully Metallic Actively Cooled Plasma-Facing Components for the Tungsten Divertor in ITER. Fusion Science and Technology, 2013, 64, 727-734.	1.1	3
79	Plasma Facing Components: Challenges For Nuclear Materials. EPJ Web of Conferences, 2013, 51, 04005.	0.3	1
80	Technological Study on Manufacturing of Multifinger Module of He-Cooled DEMO Divertor and Investigation of NDE Method. Fusion Science and Technology, 2012, 62, 134-138.	1.1	4
81	Characterization of heat flux generated by ICRH heating with cantilevered bars and a slotted box Faraday screen. Nuclear Fusion, 2012, 52, 103010.	3.5	26
82	Feasibility study of an actively cooled tungsten divertor in Tore Supra for ITER technology testing. Fusion Engineering and Design, 2011, 86, 684-688.	1.9	66
83	High heat flux testing of mock-ups for a full tungsten ITER divertor. Fusion Engineering and Design, 2011, 86, 1652-1655.	1.9	52
84	Fatigue lifetime of repaired high heat flux components for ITER divertor. Fusion Engineering and Design, 2011, 86, 1771-1775.	1.9	16
85	Influence of CFC quality on the performance of TS limiter elements under cyclic heat loading. Fusion Engineering and Design, 2011, 86, 1579-1582.	1.9	5
86	Mechanical characterization of W-armoured plasma-facing components after thermal fatigue. Physica Scripta, 2011, T145, 014077.	2.5	6
87	The heat removal capability of actively cooled plasma-facing components for the ITER divertor. Physica Scripta, 2011, T145, 014080.	2.5	10
88	Assessment of CFC grades under thermal fatigue for the ITER inner vertical target. Physica Scripta, 2011, T145, 014082.	2.5	11
89	Recent development toward the use of infrared thermography as a non destructive technique for defect detection in tungsten plasma facing components. Journal of Nuclear Materials, 2011, 417, 581-585.	2.7	7
90	Design of a W/steel functionally graded material for plasma facing components of DEMO. Journal of Nuclear Materials, 2011, 416, 262-269.	2.7	25

#	Article	IF	Citations
91	Contribution of Tore Supra in preparation of ITER. Nuclear Fusion, 2011, 51, 094014.	3.5	10
92	Definition of acceptance criteria for the ITER divertor plasma-facing components through systematic experimental analysis. Physica Scripta, 2009, T138, 014002.	2.5	11
93	Overview of the deuterium inventory campaign in Tore Supra: Operational conditions and particle balance. Journal of Nuclear Materials, 2009, 390-391, 550-555.	2.7	63
94	Infrared thermography inspection of the ITER vertical target qualification prototypes manufactured by European industry using SATIR. Fusion Engineering and Design, 2009, 84, 314-318.	1.9	18
95	Experimental activity on the definition of acceptance criteria for the ITER divertor plasma facing components. Fusion Engineering and Design, 2009, 84, 747-751.	1.9	36
96	Data merging of infrared and ultrasonic images for plasma facing components inspection. Fusion Engineering and Design, 2009, 84, 1593-1597.	1.9	7
97	Kinetic Monte–Carlo modeling of hydrogen retention and re-emission from Tore Supra deposits. Journal of Nuclear Materials, 2009, 386-388, 41-44.	2.7	3
98	Analysis of carbon deposited layer growth processes in Tore Supra. Journal of Nuclear Materials, 2009, 390-391, 49-52.	2.7	20
99	Microporosity of carbon deposits collected in the Tore Supra tokamak probed by nitrogen and carbon dioxide adsorption. Carbon, 2009, 47, 109-116.	10.3	7
100	Investigation of steady-state tokamak issues by long pulse experiments on Tore Supra. Nuclear Fusion, 2009, 49, 104010.	3.5	23
101	Porous carbon deposits in controlled fusion reactor: adsorption properties and structural characterization. Studies in Surface Science and Catalysis, 2007, 160, 249-256.	1.5	2
102	Physico-chemical characteristics of carbon deposits collected in TEXTOR and Tore Supra tokamaks. Carbon, 2007, 45, 2723-2731.	10.3	29
103	Multiscale study of the porosity of carbon deposits collected in Tore Supra. Journal of Nuclear Materials, 2007, 363-365, 1251-1255.	2.7	10
104	Leading edge cracking observed in WEST. Physica Scripta, 0, , .	2.5	3