
Delia Rita Tapia-Blacido

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6437642/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trends and challenges of starch-based foams for use as food packaging and food container. Trends in Food Science and Technology, 2022, 119, 257-271.	7.8	28
2	Starch isolation from turmeric dye extraction residue and its application in active film production. International Journal of Biological Macromolecules, 2022, 202, 508-519.	3.6	11
3	Synthesis of Antibacterial Hybrid Hydroxyapatite/Collagen/Polysaccharide Bioactive Membranes and Their Effect on Osteoblast Culture. International Journal of Molecular Sciences, 2022, 23, 7277.	1.8	5
4	Liposomes vs. chitosomes: Encapsulating food bioactives. Trends in Food Science and Technology, 2021, 108, 40-48.	7.8	60
5	Annealing process improves the physical, functional, thermal, and rheological properties of Andean oca (<scp><i>Oxalis tuberosa</i></scp>) starch. Journal of Food Process Engineering, 2021, 44, e13702.	1.5	9
6	Nopal cladode as a novel reinforcing and antioxidant agent for starch-based films: A comparison with lignin and propolis extract. International Journal of Biological Macromolecules, 2021, 183, 614-626.	3.6	18
7	Using Response Surface Methodology (RSM) to optimize 2G bioethanol production: A review. Biomass and Bioenergy, 2021, 151, 106166.	2.9	70
8	Design of experiments (DoE) to develop and to optimize nanoparticles as drug delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 165, 127-148.	2.0	55
9	Nopal cladode (Opuntia ficus-indica) flour: Production, characterization, and evaluation for producing bioactive film. Food Packaging and Shelf Life, 2021, 29, 100703.	3.3	11
10	Use of Algae Biomass Obtained by Single-Step Mild Acid Hydrolysis in Hydrogen Production by the β-Glucosidase-Producing Clostridium beijerinckii Br21. Waste and Biomass Valorization, 2020, 11, 1393-1402.	1.8	12
11	Bioactive Andean sweet potato starch-based foam incorporated with oregano or thyme essential oil. Food Packaging and Shelf Life, 2020, 23, 100457.	3.3	36
12	Biodegradable packaging antimicrobial activity. , 2020, , 207-238.		2
13	Reinforced nanocomposites for food packaging. , 2020, , 533-574.		2
14	Organic–inorganic collagen/iotaâ€carrageenan/hydroxyapatite hybrid membranes are bioactive materials for bone regeneration. Journal of Applied Polymer Science, 2019, 136, 48004.	1.3	13
15	Pineapple shell fiber as reinforcement in cassava starch foam trays. Polymers and Polymer Composites, 2019, 27, 496-506.	1.0	16
16	The addition of sugarcane bagasse and asparagus peel enhances the properties of sweet potato starch foams. Packaging Technology and Science, 2019, 32, 227-237.	1.3	18
17	Structural modification of fiber and starch in turmeric residue by chemical and mechanical treatment for production of biodegradable films. International Journal of Biological Macromolecules, 2019, 126, 507-516.	3.6	22
18	Which plasticizer is suitable for films based on babassu starch isolated by different methods?. Food Hydrocolloids, 2019, 89, 143-152.	5.6	59

Delia Rita Tapia-Blacido

#	Article	IF	CITATIONS
19	Biodegradable foam tray based on starches isolated from different Peruvian species. International Journal of Biological Macromolecules, 2019, 125, 800-807.	3.6	37
20	Is isolating starch from the residue of annatto pigment extraction feasible?. Food Hydrocolloids, 2018, 77, 117-125.	5.6	14
21	Transport Phenomena in Edible Films. , 2018, , 149-192.		8
22	Soybean straw nanocellulose produced by enzymatic or acid treatment as a reinforcing filler in soy protein isolate films. Carbohydrate Polymers, 2018, 198, 61-68.	5.1	133
23	Evaluation of the turmeric dye extraction residue in the formation of protective coating on fresh bananas (Musa acuminata cv. â€~Maçã'). Journal of Food Science and Technology, 2018, 55, 3212-3220.	1.4	7
24	Bioactive films based on babassu mesocarp flour and starch. Food Hydrocolloids, 2017, 70, 383-391.	5.6	66
25	Influence of Proportion and Size of Sugarcane Bagasse Fiber on the Properties of Sweet Potato Starch Foams. IOP Conference Series: Materials Science and Engineering, 2017, 225, 012180.	0.3	6
26	Properties of baked foams from oca (Oxalis tuberosa) starch reinforced with sugarcane bagasse and asparagus peel fiber. Procedia Engineering, 2017, 200, 178-185.	1.2	34
27	Chemical treatment and characterization of soybean straw and soybean protein isolate/straw composite films. Carbohydrate Polymers, 2017, 157, 512-520.	5.1	78
28	Using Commercial Enzymes to Produce Cellulose Nanofibers from Soybean Straw. Journal of Nanomaterials, 2016, 2016, 1-10.	1.5	75
29	Effect of amylose content and nanoclay incorporation order in physicochemical properties of starch/montmorillonite composites. Carbohydrate Polymers, 2016, 152, 351-360.	5.1	38
30	Biohydrogen Production from Liquid and Solid Fractions of Sugarcane Bagasse After Optimized Pretreatment with Hydrochloric Acid. Waste and Biomass Valorization, 2016, 7, 1017-1029.	1.8	11
31	Isolation and characterization of starch from babassu mesocarp. Food Hydrocolloids, 2016, 55, 47-55.	5.6	77
32	Formation of carrageenan-CaCO 3 bioactive membranes. Materials Science and Engineering C, 2016, 58, 1-6.	3.8	22
33	Achira as a source of biodegradable materials: Isolation and characterization of nanofibers. Carbohydrate Polymers, 2015, 123, 406-415.	5.1	50
34	Turmeric dye extraction residue for use in bioactive film production: Optimization of turmeric film plasticized with glycerol. LWT - Food Science and Technology, 2015, 64, 1187-1195.	2.5	33
35	BIOFILMS BASED ON CANIHUA FLOUR (Chenopodium Pallidicaule): DESIGN AND CHARACTERIZATION. Quimica Nova, 2014, , .	0.3	3
36	Development of bioactive edible film from turmeric dye solvent extraction residue. LWT - Food Science and Technology, 2014, 56, 269-277.	2.5	41

Delia Rita Tapia-Blacido

#	Article	IF	CITATIONS
37	Effect of drying conditions and plasticizer type on some physical and mechanical properties of amaranth flour films. LWT - Food Science and Technology, 2013, 50, 392-400.	2.5	66
38	Physical–chemical, thermal, and functional properties of achira (<i>Canna indica</i> L.) flour and starch from different geographical origin. Starch/Staerke, 2012, 64, 348-358.	1.1	56
39	Development and optimization of biodegradable films based on achira flour. Carbohydrate Polymers, 2012, 88, 449-458.	5.1	74
40	Optimization of amaranth flour films plasticized with glycerol and sorbitol by multi-response analysis. LWT - Food Science and Technology, 2011, 44, 1731-1738.	2.5	67
41	Potential of <i>Amaranthus cruentus</i> BRS Alegria in the production of flour, starch and protein concentrate: chemical, thermal and rheological characterization. Journal of the Science of Food and Agriculture, 2010, 90, 1185-1193.	1.7	18
42	Effects of drying conditions on some physical properties of soy protein films. Journal of Food Engineering, 2009, 90, 341-349.	2.7	167
43	Contribution of the Starch, Protein, and Lipid Fractions to the Physical, Thermal, and Structural Properties of Amaranth (Amaranthus caudatus) Flour Films. Journal of Food Science, 2007, 72, E293-E300.	1.5	91
44	Effects of drying temperature and relative humidity on the mechanical properties of amaranth flour films plasticized with glycerol. Brazilian Journal of Chemical Engineering, 2005, 22, 249-256.	0.7	28
45	Development and characterization of biofilms based on Amaranth flour (Amaranthus caudatus). Journal of Food Engineering, 2005, 67, 215-223.	2.7	102