Mario Porcel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6436884/publications.pdf Version: 2024-02-01

516710 501196 32 842 16 28 h-index citations g-index papers 32 32 32 1157 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Attract, reward and disrupt: responses of pests and natural enemies to combinations of habitat manipulation and semiochemicals in organic apple. Journal of Pest Science, 2022, 95, 619-631.	3.7	7
2	Using flower strips to promote green lacewings to control cabbage insect pests. Journal of Pest Science, 2022, 95, 669-683.	3.7	16
3	Extreme climate refugia: a case study of wild relatives of cacao (Theobroma cacao) in Colombia. Biodiversity and Conservation, 2022, 31, 161-182.	2.6	9
4	Predatory arthropod community composition in apple orchards: Orchard management, landscape structure and sampling method. Journal of Applied Entomology, 2021, 145, 46-54.	1.8	6
5	Two centuries of changes in Andean crop distribution. Journal of Biogeography, 2021, 48, 1972-1980.	3.0	7
6	Managementâ€dependent effects of pollinator functional diversity on apple pollination services: A response–effect trait approach. Journal of Applied Ecology, 2021, 58, 2843-2853.	4.0	26
7	Monitoring methods adapted to different perceptions and uses of functional biodiversity: Insights from a European qualitative study. Ecological Indicators, 2021, 129, 107883.	6.3	5
8	Temperature and rainfall impacts on robusta coffee bean characteristics. Climate Risk Management, 2021, 32, 100281.	3.2	35
9	Interactions Between the Nematode Heterorhabditis amazonensis JPM4 and the Predator Macrolophus basicornis: Two Natural Enemies of Tuta absoluta Native to South America. Neotropical Entomology, 2020, 49, 108-115.	1.2	2
10	Aphid-infested beans divert ant attendance from the rosy apple aphid in apple-bean intercropping. Scientific Reports, 2020, 10, 8209.	3.3	5
11	A Framework for the Selection of Plant Growth-Promoting Rhizobacteria Based on Bacterial Competence Mechanisms. Applied and Environmental Microbiology, 2020, 86, .	3.1	38
12	Extreme climate variability weakens a major tropical agricultural hub. Ecological Indicators, 2020, 111, 106015.	6.3	26
13	Development of sustainable plant protection programs through multi-actor Co-innovation: An 8-year case study in Swedish apple production. Journal of Cleaner Production, 2019, 234, 1178-1191.	9.3	6
14	Farmers' management of functional biodiversity goes beyond pest management in organic European apple orchards. Agriculture, Ecosystems and Environment, 2019, 284, 106555.	5.3	30
15	Perennial flower strips for pest control in organic apple orchards - A pan-European study. Agriculture, Ecosystems and Environment, 2019, 278, 43-53.	5.3	48
16	Design, implementation and management of perennial flower strips to promote functional agrobiodiversity in organic apple orchards: A pan-European study. Agriculture, Ecosystems and Environment, 2019, 278, 61-71.	5.3	39
17	Management tradeâ€offs on ecosystem services in apple orchards across Europe: Direct and indirect effects of organic production. Journal of Applied Ecology, 2019, 56, 802-811.	4.0	59
18	Predatory arthropods in apple orchards across Europe: Responses to agricultural management, adjacent habitat, landscape composition and country. Agriculture, Ecosystems and Environment, 2019, 273, 141-150.	5.3	34

MARIO PORCEL

#	Article	IF	CITATIONS
19	Recruiting on the Spot: A Biodegradable Formulation for Lacewings to Trigger Biological Control of Aphids. Insects, 2019, 10, 6.	2.2	8
20	Organic management in apple orchards: Higher impacts on biological control than on pollination. Journal of Applied Ecology, 2018, 55, 2779-2789.	4.0	58
21	The effect of resident vegetation cover on abundance and diversity of green lacewings (Neuroptera:) Tj ETQq1 1	0.784314 3.7	rgBT /Over
22	Methods to identify the prey of invertebrate predators in terrestrial field studies. Ecology and Evolution, 2017, 7, 1942-1953.	1.9	74
23	Soil application of <i>Beauveria bassiana</i> GHA against apple sawfly, <i>Hoplocampa testudinea</i> (Hymenoptera: Tenthredinidae): Field mortality and fungal persistence. Insect Science, 2016, 23, 854-868.	3.0	12
24	Sunflower as a trap crop for the European tarnished plant bug (<i>Lygus rugulipennis</i>). Journal of Applied Entomology, 2016, 140, 453-461.	1.8	15
25	Weeds within willow short-rotation coppices alter the arthropod community and improve biological control of the blue willow beetle. BioControl, 2016, 61, 103-114.	2.0	11
26	Mating disruption of <i>Spilonota ocellana</i> and other apple orchard tortricids using a multispecies reservoir dispenser. Pest Management Science, 2015, 71, 562-570.	3.4	15
27	Analysis of the pathogenic potential of nosocomial Pseudomonas putida strains. Frontiers in Microbiology, 2015, 6, 871.	3.5	78
28	Antibiotic Resistance Determinants in a Pseudomonas putida Strain Isolated from a Hospital. PLoS ONE, 2014, 9, e81604.	2.5	86
29	Agricultural Management Systems Affect the Green Lacewing Community (Neuroptera: Chrysopidae) in Olive Orchards in Southern Spain. Environmental Entomology, 2013, 42, 97-106.	1.4	20
30	Biological and behavioral effects of kaolin particle film on larvae and adults of Chrysoperla carnea (Neuroptera: Chrysopidae). Biological Control, 2011, 59, 98-105.	3.0	25
31	Potential value of the fibre nettle Urtica dioica as a resource for the nettle aphid Microlophium carnosum and its insect and fungal natural enemies. BioControl, 2011, 56, 215-223.	2.0	7
32	Short communication. Incidence of the OLIPE mass-trapping on olive non-target arthropods. Spanish Journal of Agricultural Research, 2009, 7, 660.	0.6	5