Niloofar Karimian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6436455/publications.pdf

Version: 2024-02-01

22 860 16
papers citations h-index

16 22
h-index g-index

22 22 all docs citations

22 times ranked 711 citing authors

#	Article	IF	Citations
1	An X-ray absorption spectroscopic study of the Fe(II)-induced transformation of Cr(VI)-substituted schwertmannite. Journal of Hazardous Materials, 2022, 431, 128580.	12.4	8
2	Remediation of Pb-contaminated soil using modified bauxite refinery residue. Journal of Hazardous Materials, 2022, 437, 129339.	12.4	8
3	Reductive transformation of birnessite and the mobility of co-associated antimony. Journal of Hazardous Materials, 2021, 404, 124227.	12.4	9
4	Impact of Antimony(V) on Iron(II)-Catalyzed Ferrihydrite Transformation Pathways: A Novel Mineral Switch for Feroxyhyte Formation. Environmental Science & Environmental Science & 2021, 55, 4954-4963.	10.0	27
5	Arsenic-Imposed Effects on Schwertmannite and Jarosite Formation in Acid Mine Drainage and Coupled Impacts on Arsenic Mobility. ACS Earth and Space Chemistry, 2021, 5, 1418-1435.	2.7	35
6	Antimonate Controls Manganese(II)-Induced Transformation of Birnessite at a Circumneutral pH. Environmental Science & Environm	10.0	10
7	Antimony and arsenic speciation, redox-cycling and contrasting mobility in a mining-impacted river system. Science of the Total Environment, 2020, 710, 136354.	8.0	83
8	Seasonal Temperature Oscillations Drive Contrasting Arsenic and Antimony Mobilization in a Miningâ€Impacted River System. Water Resources Research, 2020, 56, e2020WR028196.	4.2	12
9	Antimony Sorption to Goethite: Effects of Fe(II)-Catalyzed Recrystallization. ACS Earth and Space Chemistry, 2020, 4, 476-487.	2.7	62
10	Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates. Environmental Pollution, 2019, 254, 113112.	7.5	38
11	A new pathway for hexavalent chromium formation in soil: Fire-induced alteration of iron oxides. Environmental Pollution, 2019, 247, 618-625.	7. 5	24
12	Chromium(VI) formation via heating of Cr(III)-Fe(III)-(oxy)hydroxides: A pathway for fire-induced soil pollution. Chemosphere, 2019, 222, 440-444.	8.2	21
13	Humic acid impacts antimony partitioning and speciation during iron(II)-induced ferrihydrite transformation. Science of the Total Environment, 2019, 683, 399-410.	8.0	50
14	Fire Promotes Arsenic Mobilization and Rapid Arsenic(III) Formation in Soil via Thermal Alteration of Arsenic-Bearing Iron Oxides. Frontiers in Earth Science, 2019, 7, .	1.8	19
15	Antimony mobility in reducing environments: The effect of microbial iron(III)-reduction and associated secondary mineralization. Geochimica Et Cosmochimica Acta, 2019, 245, 278-289.	3.9	77
16	Rapid arsenic(V)-reduction by fire in schwertmannite-rich soil enhances arsenic mobilisation. Geochimica Et Cosmochimica Acta, 2018, 227, 1-18.	3.9	19
17	Iron and sulfur cycling in acid sulfate soil wetlands under dynamic redox conditions: A review. Chemosphere, 2018, 197, 803-816.	8.2	150
18	Antimony and arsenic partitioning during Fe2+-induced transformation of jarosite under acidic conditions. Chemosphere, 2018, 195, 515-523.	8.2	53

#	Article	IF	CITATIONS
19	Antimony and Arsenic Behavior during Fe(II)-Induced Transformation of Jarosite. Environmental Science & Environmental Science	10.0	97
20	Effect of cyclic redox oscillations on water quality in freshwater acid sulfate soil wetlands. Science of the Total Environment, 2017, 581-582, 314-327.	8.0	31
21	Acidity generation accompanying iron and sulfur transformations during drought simulation of freshwater re-flooded acid sulfate soils. Geoderma, 2017, 285, 117-131.	5.1	20
22	Effect of converter sludge, and its mixtures with organic matter, elemental sulfur and sulfuric acid on availability of iron, phosphorus and manganese of 3 calcareous soils from central Iran. African Journal of Agricultural Research Vol Pp, 2012, 7, .	0.5	7