Donald B Katz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6436427/publications.pdf Version: 2024-02-01

DONALD R KATZ

#	Article	IF	CITATIONS
1	Dynamic and Multimodal Responses of Gustatory Cortical Neurons in Awake Rats. Journal of Neuroscience, 2001, 21, 4478-4489.	3.6	283
2	The EJC Factor eIF4AIII Modulates Synaptic Strength and Neuronal Protein Expression. Cell, 2007, 130, 179-191.	28.9	278
3	Natural stimuli evoke dynamic sequences of states in sensory cortical ensembles. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18772-18777.	7.1	256
4	Behavioral States, Network States, and Sensory Response Variability. Journal of Neurophysiology, 2008, 100, 1160-1168.	1.8	187
5	Learning-Related Plasticity of Temporal Coding in Simultaneously Recorded Amygdala–Cortical Ensembles. Journal of Neuroscience, 2008, 28, 2864-2873.	3.6	149
6	Distinct Subtypes of Basolateral Amygdala Taste Neurons Reflect Palatability and Reward. Journal of Neuroscience, 2009, 29, 2486-2495.	3.6	112
7	State-Dependent Modulation of Time-Varying Gustatory Responses. Journal of Neurophysiology, 2006, 96, 3183-3193.	1.8	111
8	Gustatory processing is dynamic and distributed. Current Opinion in Neurobiology, 2002, 12, 448-454.	4.2	105
9	Stochastic Transitions between Neural States in Taste Processing and Decision-Making. Journal of Neuroscience, 2010, 30, 2559-2570.	3.6	105
10	Inactivation of Basolateral Amygdala Specifically Eliminates Palatability-Related Information in Cortical Sensory Responses. Journal of Neuroscience, 2012, 32, 9981-9991.	3.6	100
11	Taste-Specific Neuronal Ensembles in the Gustatory Cortex of Awake Rats. Journal of Neuroscience, 2002, 22, 1850-1857.	3.6	95
12	Sodium Concentration Coding Gives Way to Evaluative Coding in Cortex and Amygdala. Journal of Neuroscience, 2012, 32, 9999-10011.	3.6	90
13	The Behavioral Relevance of Cortical Neural Ensemble Responses Emerges Suddenly. Journal of Neuroscience, 2016, 36, 655-669.	3.6	76
14	Gustatory processing: a dynamic systems approach. Current Opinion in Neurobiology, 2006, 16, 420-428.	4.2	74
15	7 to 12 Hz Activity in Rat Gustatory Cortex Reflects Disengagement From a Fluid Self-Administration Task. Journal of Neurophysiology, 2005, 93, 2832-2840.	1.8	65
16	Retronasal Odor Perception Requires Taste Cortex, but Orthonasal Does Not. Current Biology, 2019, 29, 62-69.e3.	3.9	64
17	Sensory Cortical Population Dynamics Uniquely Track Behavior across Learning and Extinction. Journal of Neuroscience, 2014, 34, 1248-1257.	3.6	61
18	A Multisensory Network for Olfactory Processing. Current Biology, 2015, 25, 2642-2650.	3.9	61

Donald B Katz

#	Article	IF	CITATIONS
19	Lateral Hypothalamus Contains Two Types of Palatability-Related Taste Responses with Distinct Dynamics. Journal of Neuroscience, 2013, 33, 9462-9473.	3.6	59
20	Neural dynamics in response to binary taste mixtures. Journal of Neurophysiology, 2013, 109, 2108-2117.	1.8	47
21	Single and population coding of taste in the gustatory cortex of awake mice. Journal of Neurophysiology, 2019, 122, 1342-1356.	1.8	44
22	Accuracy and response-time distributions for decision-making: linear perfect integrators versus nonlinear attractor-based neural circuits. Journal of Computational Neuroscience, 2013, 35, 261-294.	1.0	43
23	Cortical Networks Produce Three Distinct 7–12 Hz Rhythms during Single Sensory Responses in the Awake Rat. Journal of Neuroscience, 2010, 30, 4315-4324.	3.6	40
24	Impact of precisely-timed inhibition of gustatory cortex on taste behavior depends on single-trial ensemble dynamics. ELife, 2019, 8, .	6.0	40
25	Interaction of Taste and Place Coding in the Hippocampus. Journal of Neuroscience, 2019, 39, 3057-3069.	3.6	34
26	Homeostatic synaptic scaling establishes the specificity of an associative memory. Current Biology, 2021, 31, 2274-2285.e5.	3.9	31
27	Haloperidol-induced changes in neuronal activity in the striatum of the freely moving rat. Frontiers in Systems Neuroscience, 2013, 7, 110.	2.5	30
28	Sensory Cortical Activity Is Related to the Selection of a Rhythmic Motor Action Pattern. Journal of Neuroscience, 2016, 36, 5596-5607.	3.6	29
29	Dynamic taste responses of parabrachial pontine neurons in awake rats. Journal of Neurophysiology, 2016, 115, 1314-1323.	1.8	23
30	Licking Microstructure Reveals Rapid Attenuation of Neophobia. Chemical Senses, 2014, 39, 203-213.	2.0	22
31	Local Field Potentials in the Gustatory Cortex Carry Taste Information. Journal of Neuroscience, 2014, 34, 8778-8787.	3.6	16
32	Preexposure to salty and sour taste enhances conditioned taste aversion to novel sucrose. Learning and Memory, 2016, 23, 221-228.	1.3	16
33	Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP). Journal of Neuroscience, 2016, 36, 10654-10662.	3.6	16
34	Genetically Induced Cholinergic Hyper-Innervation Enhances Taste Learning. Frontiers in Systems Neuroscience, 2011, 5, 97.	2.5	15
35	The role of the gustatory cortex in incidental experience-evoked enhancement of later taste learning. Learning and Memory, 2018, 25, 587-600.	1.3	15
36	Python meets systems neuroscience: affordable, scalable and open-source electrophysiology in awake, behaving rodents. , 2017, , .		13

Donald B Katz

#	Article	IF	CITATIONS
37	The Many Flavors of Temporal Coding in Gustatory Cortex. Chemical Senses, 2005, 30, i80-i81.	2.0	11
38	Receptors, Circuits, and Behaviors: New Directions in Chemical Senses. Journal of Neuroscience, 2008, 28, 11802-11805.	3.6	11
39	Refinement and Reactivation of a Taste-Responsive Hippocampal Network. Current Biology, 2020, 30, 1306-1311.e4.	3.9	11
40	Perturbation of amygdala-cortical projections reduces ensemble coherence of palatability coding in gustatory cortex. ELife, 2021, 10, .	6.0	9
41	Optogenetic perturbation of projections from thalamic nucleus reuniens to hippocampus disrupts spatial working memory retrieval more than encoding. Neurobiology of Learning and Memory, 2021, 179, 107396.	1.9	8
42	Deletion of Stk11 and Fos in mouse BLA projection neurons alters intrinsic excitability and impairs formation of long-term aversive memory. ELife, 2020, 9, .	6.0	7
43	Electrophysiological Studies of Gustation in Awake Rats. Frontiers in Neuroscience, 2001, , .	0.0	6
44	Stochastic Transitions between States of Neural Activity. , 2011, , 29-46.		5
45	A model of naturalistic decision making in preference tests. PLoS Computational Biology, 2021, 17, e1009012.	3.2	4
46	Cortical taste processing evolves through benign taste exposures Behavioral Neuroscience, 2022, 136, 182-194.	1.2	4
47	The function of groups of neurons changes from moment to moment. Current Opinion in Physiology, 2021, 20, 1-7.	1.8	3
48	Parametric shift from rational to irrational decisions in mice. Scientific Reports, 2021, 11, 480.	3.3	2
49	Editorial overview: Systems neuroscience 2016. Current Opinion in Neurobiology, 2016, 40, iv-vi.	4.2	0