
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6436350/publications.pdf Version: 2024-02-01

LODGE RAÃ+LIELOS

#	Article	IF	CITATIONS
1	Phosphorogenic dipyrrinato-iridium(III) complexes as photosensitizers for photodynamic therapy. Dyes and Pigments, 2022, 197, 109886.	3.7	3
2	Development of Geometry-Controlled All-Orthogonal BODIPY Trimers for Photodynamic Therapy and Phototheragnosis. Organic Letters, 2022, 24, 3636-3641.	4.6	11
3	Mechanochemistry as a Sustainable Method for the Preparation of Fluorescent Ugi BODIPY Adducts. European Journal of Organic Chemistry, 2021, 2021, 253-265.	2.4	7
4	Taming the Photonic Behavior of Laser Dyes Through Specific and Dynamic Selfâ€Assembly onto Cellulose Nanocrystals. Advanced Photonics Research, 2021, 2, 2000107.	3.6	1
5	Isopinocampheyl-based <i>C</i> -BODIPYs: a model strategy to construct cost-effective boron-chelate emitters of circularly polarized light. Organic Chemistry Frontiers, 2021, 8, 4752-4757.	4.5	4
6	BINOLated aminostyryl BODIPYs: a workable organic molecular platform for NIR circularly polarized luminescence. Chemical Communications, 2021, 57, 5750-5753.	4.1	26
7	A Concise Synthesis of a BODIPY-Labeled Tetrasaccharide Related to the Antitumor PI-88. Molecules, 2021, 26, 2909.	3.8	4
8	A Concise Route to Water-Soluble 2,6-Disubstituted BODIPY-Carbohydrate Fluorophores by Direct Ferrier-Type C-Glycosylation. Journal of Organic Chemistry, 2021, 86, 9181-9188.	3.2	6
9	Access to 2,6-Dipropargylated BODIPYs as "Clickable―Congeners of Pyrromethene-567 Dye: Photostability and Synthetic Versatility. Organic Letters, 2021, 23, 6801-6806.	4.6	15
10	From photosensitizers to light harvesters adapting the molecular structure in all-BODIPY assemblies. Physical Chemistry Chemical Physics, 2021, 23, 11191-11195.	2.8	3
11	Mitochondria selective trackers for long-term imaging based on readily accessible neutral BODIPYs. Chemical Communications, 2021, 57, 5318-5321.	4.1	6
12	Insight into the Influence of the Chiral Molecular Symmetry on the Chiroptics of Fluorescent BINOL-Based Boron Chelates. , 2021, 3, .		0
13	Insight into the Influence of the Chiral Molecular Symmetry on the Chiroptics of Fluorescent BINOL-Based Boron Chelates. Chemistry Proceedings, 2021, 3, .	0.1	2
14	Influence of At-Bridge Nitro Groups on the Photophysics and Chiroptics of helicoBODIPYs: A Step Forward towards the Development of New Chiroptical Sensors. , 2021, 8, .		0
15	Exploring New Mitochondria-Targetable Theragnostic styrylBODIPYs. , 2021, 8, .		1
16	Red/NIR Thermally Activated Delayed Fluorescence from Azaâ€BODIPYs. Chemistry - A European Journal, 2020, 26, 16080-16088.	3.3	7
17	Multichromophoric COO-BODIPYs: an advantageous design for the development of energy transfer and electron transfer systems. Chemical Communications, 2020, 56, 13025-13028.	4.1	8
18	A Palette of Efficient and Stable Far-Red and NIR Dye Lasers. Applied Sciences (Switzerland), 2020, 10, 6206.	2.5	4

#	Article	IF	CITATIONS
19	BCl3-Activated Synthesis of COO-BODIPY Laser Dyes: General Scope and High Yields under Mild Conditions. Journal of Organic Chemistry, 2020, 85, 4594-4601.	3.2	20
20	Ready Access to Molecular Rotors Based on Boron Dipyrromethene Dyes-Coumarin Dyads Featuring Broadband Absorption. Molecules, 2020, 25, 781.	3.8	3
21	BODIPYs as Chemically Stable Fluorescent Tags for Synthetic Glycosylation Strategies towards Fluorescently Labeled Saccharides. Chemistry - A European Journal, 2020, 26, 5388-5399.	3.3	12
22	Argiak zuzendutako tratamendu alternatiboa minbiziaren kontra. Ekaia (journal), 2020, , 145-157.	0.0	0
23	Luminiszentzia, baliabide aproposa ioien eta biomolekulen presentzia agerian jartzeko. Ekaia (journal), 2020, , 215-230.	0.0	Ο
24	Alkynyl N-BODIPYs as Reactive Intermediates for the Development of Dyes for Biophotonics. Chemistry Proceedings, 2020, 3, .	0.1	0
25	Tuning the Photonic Behavior of Symmetrical bis-BODIPY Architectures: The Key Role of the Spacer Moiety. Frontiers in Chemistry, 2019, 7, 801.	3.6	5
26	Towards Efficient and Photostable Redâ€Emitting Photonic Materials Based on Symmetric Allâ€BODIPYâ€Triads, â€Pentads, and â€Hexads. Chemistry - A European Journal, 2019, 25, 14959-14971.	3.3	8
27	Synthetic Approach to Readily Accessible Benzofuran-Fused Borondipyrromethenes as Red-Emitting Laser Dyes. Journal of Organic Chemistry, 2019, 84, 2523-2541.	3.2	31
28	Modulating ICT emission: a new strategy to manipulate the CPL sign in chiral emitters. Chemical Communications, 2019, 55, 1631-1634.	4.1	59
29	BOPHYs versus BODIPYs: A comparison of their performance as effective multi-function organic dyes. Dyes and Pigments, 2019, 170, 107662.	3.7	21
30	FormylBODIPYs by PCC-Promoted Selective Oxidation of α-MethylBODIPYs. Synthetic Versatility and Applications. Organic Letters, 2019, 21, 4563-4566.	4.6	17
31	A Malonyl-Based Scaffold for Conjugatable Multivalent Carbohydrate-BODIPY Presentations. Molecules, 2019, 24, 2050.	3.8	6
32	A general modular approach for the solubility tagging of BODIPY dyes. Dyes and Pigments, 2019, 170, 107545.	3.7	10
33	Chiral Microneedles from an Achiral Bis(boron dipyrromethene): Spontaneous Mirror Symmetry Breaking Leading to a Promising Photoluminescent Organic Material. Langmuir, 2019, 35, 5021-5028.	3.5	6
34	Tailoring the Molecular Skeleton of Azaâ€BODIPYs to Design Photostable Redâ€Lightâ€Emitting Laser Dyes. ChemPhotoChem, 2019, 3, 63-63.	3.0	0
35	A BODIPY-Based Fluorescent Sensor for Amino Acids Bearing Thiol. Proceedings (mdpi), 2019, 41, .	0.2	1
36	Exploring N-BODIPYs as Privileged Scaffolds to Build Off/On Fluorescent Sensors by PET. Proceedings (mdpi), 2019, 41, .	0.2	2

#	Article	IF	CITATIONS
37	C*-BODIPYs: Exploring a New Strategy to Transfer Chirality towards BODIPY Chiroptics. Proceedings (mdpi), 2019, 41, .	0.2	2
38	Dye Encapsulation Into One-Dimensional Zeolitic Materials for Optical Applications. , 2019, , 229-248.		1
39	Hydrogen production from a model bio-oil/bio-glycerol mixture through steam reforming using Zeolite L supported catalysts. International Journal of Hydrogen Energy, 2019, 44, 1492-1504.	7.1	29
40	Tailoring the Molecular Skeleton of Azaâ€BODIPYs to Design Photostable Red‣ightâ€Emitting Laser Dyes. ChemPhotoChem, 2019, 3, 75-85.	3.0	11
41	Koloratzaile organikoz dopaturiko L-zeolita antena material luminiszente gisa. Ekaia (journal), 2019, , 101-118.	0.0	0
42	Stereochemical and Steric Control of Photophysical and Chiroptical Properties in Bichromophoric Systems. Chemistry - A European Journal, 2018, 24, 3802-3815.	3.3	11
43	Synthesis, Photophysical Study, and Biological Application Analysis of Complex Borondipyrromethene Dyes. ACS Omega, 2018, 3, 7783-7797.	3.5	9
44	Ikusgai-eremu elektromagnetiko osoan zehar igorpen sintonizagarria duten BODIPY laser-koloratzaileak. Ekaia (journal), 2018, , 97-114.	0.0	0
45	Koloratzaile-laserra, ezinbesteko argi iturria eguneroko bizitzan. Ekaia (journal), 2018, , 243-260.	0.0	Ο
46	Controlling Vilsmeier-Haack processes in meso-methylBODIPYs: A new way to modulate finely photophysical properties in boron dipyrromethenes. Dyes and Pigments, 2017, 141, 286-298.	3.7	12
47	<i>N</i> â€BODIPYs Come into Play: Smart Dyes for Photonic Materials. Chemistry - A European Journal, 2017, 23, 9383-9390.	3.3	30
48	Rational molecular design enhancing the photonic performance of red-emitting perylene bisimide dyes. Physical Chemistry Chemical Physics, 2017, 19, 13210-13218.	2.8	14
49	A versatile fluorescent molecular probe endowed with singlet oxygen generation under white-light photosensitization. Dyes and Pigments, 2017, 142, 77-87.	3.7	14
50	One-Pot Synthesis of Rotationally Restricted, Conjugatable, BODIPY Derivatives from Phthalides. Journal of Organic Chemistry, 2017, 82, 1240-1247.	3.2	24
51	Solventâ€5ensitive Emitting Ureaâ€Bridged bisâ€BODIPYs: Ready Access by a Oneâ€Pot Tandem Staudinger/Azaâ€Wittig Ureation. Chemistry - A European Journal, 2017, 23, 17511-17520.	3.3	7
52	Modulation of ICT probability in bi(polyarene)-based O-BODIPYs: towards the development of low-cost bright arene-BODIPY dyads. Dalton Transactions, 2017, 46, 11830-11839.	3.3	22
53	A versatile synthetic approach to design tailor-made push-pull chromophores with intriguing and tunable photophysical signatures. Dyes and Pigments, 2017, 147, 246-259.	3.7	7
54	Photoactive Nanomaterials Inspired by Nature: LTL Zeolite Doped with Laser Dyes as Artificial Light Harvesting Systems. Materials, 2017, 10, 495.	2.9	17

#	Article	IF	CITATIONS
55	Bis(haloBODIPYs) with Labile Helicity: Valuable Simple Organic Molecules That Enable Circularly Polarized Luminescence. Chemistry - A European Journal, 2016, 22, 8805-8808.	3.3	58
56	BODIPY Dye, the Most Versatile Fluorophore Ever?. Chemical Record, 2016, 16, 335-348.	5.8	235
57	Synthesis, Properties, and Functionalization of Nonsymmetric 8â€MethylthioBODIPYs. European Journal of Organic Chemistry, 2016, 2016, 5009-5023.	2.4	11
58	Push–pull flexibly-bridged bis(haloBODIPYs): solvent and spacer switchable red emission. Dalton Transactions, 2016, 45, 11839-11848.	3.3	23
59	Unprecedented Jâ€Aggregated Dyes in Pure Organic Solvents. Advanced Functional Materials, 2016, 26, 2756-2769.	14.9	52
60	Nearâ€ i R BODIPY Dyes à la Carte—Programmed Orthogonal Functionalization of Rationally Designed Building Blocks. Chemistry - A European Journal, 2016, 22, 1048-1061.	3.3	45
61	FormylBODIPYs: Privileged Building Blocks for Multicomponent Reactions. The Case of the Passerini Reaction. Journal of Organic Chemistry, 2016, 81, 2888-2898.	3.2	28
62	An asymmetric BODIPY triad with panchromatic absorption for high-performance red-edge laser emission. Chemical Communications, 2015, 51, 11382-11385.	4.1	23
63	Emission properties of dye-doped cationic nanoparticles: size, surfactant and monomeric composition effects. RSC Advances, 2015, 5, 4454-4462.	3.6	3
64	Coumarin–BODIPY hybrids by heteroatom linkage: versatile, tunable and photostable dye lasers for UV irradiation. Physical Chemistry Chemical Physics, 2015, 17, 8239-8247.	2.8	56
65	Scope and Limitations of the Liebeskind–Srogl Cross-Coupling Reactions Involving the Biellmann BODIPY. Journal of Organic Chemistry, 2015, 80, 5771-5782.	3.2	36
66	Excitation energy transfer in artificial antennas: from photoactive materials to molecular assemblies. International Reviews in Physical Chemistry, 2015, 34, 515-556.	2.3	19
67	Straightforward Synthetic Protocol for the Introduction of Stabilized Câ€Nucleophiles in the BODIPY Core for Advanced Sensing and Photonic Applications. Chemistry - A European Journal, 2015, 21, 1755-1764.	3.3	22
68	Increased laser action in commercial dyes from fluorination regardless of their skeleton. Laser Physics Letters, 2014, 11, 115818.	1.4	9
69	Micellar charge induced emissive response of a bio-active 3-pyrazolyl-2-pyrazoline derivative: a spectroscopic and quantum chemical analysis. RSC Advances, 2014, 4, 56361-56372.	3.6	7
70	First Highly Efficient and Photostable <i>E</i> and <i>C</i> â€Derivatives of 4,4â€Difluoroâ€4â€boraâ€3a,4aâ€diazaâ€ <i>s</i> â€indacene (BODIPY) as Dye Lasers in the Liquid Phase, Thin F Solidâ€5tate Rods. Chemistry - A European Journal, 2014, 20, 2646-2653.	ilm3s3 and	62
71	Ni and RhNi catalysts supported on Zeolites L for hydrogen and syngas production by biogas reforming processes. Chemical Engineering Journal, 2014, 238, 178-188.	12.7	66
72	Spiranic BODIPYs: a ground-breaking design to improve the energy transfer in molecular cassettes. Chemical Communications, 2014, 50, 12765-12767.	4.1	30

#	Article	IF	CITATIONS
73	A FRET analysis of dye diffusion in core/shell polymer nanoparticles. RSC Advances, 2014, 4, 22115.	3.6	7
74	Convenient Access to Carbohydrate–BODIPY Hybrids by Two Complementary Methods Involving Oneâ€Pot Assembly of "Clickable―BODIPY Dyes. European Journal of Organic Chemistry, 2014, 2014, 5659-5663.	2.4	25
75	Förster Resonance Energy Transfer and Laser Efficiency in Colloidal Suspensions of Dye-Doped Nanoparticles: Concentration Effects. Journal of Physical Chemistry C, 2014, 118, 13107-13117.	3.1	24
76	Focusing on charge-surface interfacial effects to enhance the laser properties of dye-doped nanoparticles. Laser Physics Letters, 2014, 11, 015901.	1.4	3
77	Selective Lateral Lithiation of Methyl BODIPYs: Synthesis, Photophysics, and Electrochemistry of New <i>Meso</i> Derivatives. Organic Letters, 2014, 16, 4364-4367.	4.6	32
78	Microwave Synthesis of LTL Zeolites with Tunable Size and Morphology: An Optimal Support for Metalâ€Catalyzed Hydrogen Production from Biogas Reforming Processes. Particle and Particle Systems Characterization, 2014, 31, 110-120.	2.3	11
79	Carboxylates versus Fluorines: Boosting the Emission Properties of Commercial BODIPYs in Liquid and Solid Media. Advanced Functional Materials, 2013, 23, 4195-4205.	14.9	56
80	8-Functionalization of Alkyl-Substituted-3,8-Dimethyl BODIPYs by Knoevenagel Condensation. Organic Letters, 2013, 15, 4454-4457.	4.6	42
81	Reaction of Amines with 8â€MethylthioBODIPY: Dramatic Optical and Laser Response to Amine Substitution. Chemistry - an Asian Journal, 2013, 8, 2691-2700.	3.3	36
82	Highly efficient and photostable bulk and thin film dye lasers based on new pyrromethene derivatives. , 2013, , .		0
83	Strong intramolecular charge transfer emission in benzobisoxazole cruciforms: solvatochromic dyes as polarity indicators. Physical Chemistry Chemical Physics, 2013, 15, 18023.	2.8	23
84	Unprecedented induced axial chirality in a molecular BODIPY dye: strongly bisignated electronic circular dichroism in the visible region. Chemical Communications, 2013, 49, 11641.	4.1	42
85	Photophysical and Laser Properties of Cassettes based on a BODIPY and Rhodamine Pair. Chemistry - an Asian Journal, 2013, 8, 3133-3141.	3.3	12
86	Blueâ€toâ€Orange Colorâ€Tunable Laser Emission from Tailored Boronâ€Dipyrromethene Dyes. ChemPhysChem, 2013, 14, 4134-4142.	2.1	59
87	Nitro and amino BODIPYS: crucial substituents to modulate their photonic behavior. RSC Advances, 2013, 3, 1547-1556.	3.6	37
88	Ultraviolet–Visible Dual Absorption by Single BODIPY Dye Confined in LTL Zeolite Nanochannels. Journal of Physical Chemistry C, 2013, 117, 13331-13336.	3.1	33
89	8-Alkoxy- and 8-Aryloxy-BODIPYs: Straightforward Fluorescent Tagging of Alcohols and Phenols. Journal of Organic Chemistry, 2013, 78, 5867-5877.	3.2	55
90	Singular laser behavior of hemicyanine dyes: unsurpassed efficiency and finely structured spectrum in the near-IR region. Laser Physics Letters, 2012, 9, 426-433.	1.4	20

#	Article	IF	CITATIONS
91	Chlorinated BODIPYs: Surprisingly Efficient and Highly Photostable Laser Dyes. European Journal of Organic Chemistry, 2012, 2012, 6335-6350.	2.4	92
92	Photophysical and Lasing Properties of Rh6G Confined Polymeric Nanoparticles Suspension. , 2012, , .		0
93	FRET-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles. Nature Photonics, 2012, 6, 621-626.	31.4	137
94	Synthesis and Optical and Redox Properties of Symmetric and Asymmetric BODIPYs. ChemPhysChem, 2012, 13, 3923-3931.	2.1	15
95	8-AminoBODIPYs: Cyanines or Hemicyanines? The Effect of the Coplanarity of the Amino Group on Their Optical Properties. Journal of Organic Chemistry, 2012, 77, 5434-5438.	3.2	80
96	Versatile Photoactive Materials Based on Zeoliteâ€L Doped with Laser Dyes. ChemPlusChem, 2012, 77, 61-70.	2.8	18
97	Synthesis and functionalization of new polyhalogenated BODIPY dyes. Study of their photophysical properties and singlet oxygen generation. Tetrahedron, 2012, 68, 1153-1162.	1.9	117
98	Distribution and orientation study of dyes intercalated into single sepiolite fibers. A confocal fluorescence microscopy approach. Journal of Materials Chemistry, 2011, 21, 269-276.	6.7	24
99	Unprecedented laser action from energy transfer in multichromophoric BODIPY cassettes. Chemical Communications, 2011, 47, 11513.	4.1	45
100	Difluoro-boron-triaza-anthracene: a laser dye in the blue region. Theoretical simulation of alternative difluoro-boron-diaza-aromatic systems. Physical Chemistry Chemical Physics, 2011, 13, 3437-3445.	2.8	43
101	Modulation of the photophysical properties of BODIPY dyes by substitution at their meso position RSC Advances, 2011, 1, 677.	3.6	62
102	Photophysical and Lasing Properties of Rhodamine 6G Confined in Polymeric Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 3926-3933.	3.1	28
103	New 8â€Aminoâ€BODIPY Derivatives: Surpassing Laser Dyes at Blueâ€Edge Wavelengths. Chemistry - A European Journal, 2011, 17, 7261-7270.	3.3	141
104	Click Assembly of Dyeâ€Functionalized Octasilsesquioxanes for Highly Efficient and Photostable Photonic Systems. Chemistry - A European Journal, 2011, 17, 13258-13268.	3.3	29
105	Controlling Optical Properties and Function of BODIPY by Using Asymmetric Substitution Effects. Chemistry - A European Journal, 2010, 16, 14094-14105.	3.3	38
106	8-PropargylaminoBODIPY: unprecedented blue-emitting pyrromethene dye. Synthesis, photophysics and laser properties. Chemical Communications, 2010, 46, 5103.	4.1	121
107	Red-edge-wavelength finely-tunable laser action from new BODIPY dyes. Physical Chemistry Chemical Physics, 2010, 12, 7804.	2.8	72
108	New Analogues of the BODIPY Dye PM597: Photophysical and Lasing Properties in Liquid Solutions and in Solid Polymeric Matrices. Journal of Physical Chemistry A, 2009, 113, 8118-8124.	2.5	56

#	Article	IF	CITATIONS
109	Photophysical Characterization of New 3-Amino and 3-Acetamido BODIPY Dyes with Solvent Sensitive Properties. Journal of Fluorescence, 2008, 18, 899-907.	2.5	28
110	New laser dye based on the 3-styryl analog of the BODIPY dye PM567. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 198, 192-199.	3.9	45
111	Photophysical and laser emission studies of 8-polyphenylene-substituted BODIPY dyes in liquid solution and in solid polymeric matrices. Photochemical and Photobiological Sciences, 2008, 7, 802-813.	2.9	32
112	Photophysical Study of New Versatile Multichromophoric Diads and Triads with BODIPY and Polyphenylene Groups. Journal of Physical Chemistry A, 2008, 112, 10816-10822.	2.5	23
113	Bichromatic laser emission from dipyrromethene dyes incorporated into solid polymeric media. Journal of Applied Physics, 2007, 101, 113110.	2.5	5
114	Laser and Physical Properties of BODIPY Chromophores in New Fluorinated Polymeric Materials. Journal of Physical Chemistry C, 2007, 111, 1508-1516.	3.1	34
115	Synthesis, Photophysical Properties, and Laser Behavior of 3-Amino and 3-Acetamido BODIPY Dyes. Organic Letters, 2007, 9, 4183-4186.	4.6	60
116	Transparent Zeolite–Polymer Hybrid Materials with Adaptable Properties. Advanced Functional Materials, 2007, 17, 2298-2306.	14.9	56
117	Structural Changes in the BODIPY Dye PM567 Enhancing the Laser Action in Liquid and Solid Media. Advanced Functional Materials, 2007, 17, 3088-3098.	14.9	56
118	Photophysics and lasing correlation of pyrromethene 567 dye in crosslinked polymeric networks. Journal of Luminescence, 2007, 126, 833-837.	3.1	4
119	Concerning the color change of pyrromethene 650 dye in electron-donor solvents. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 184, 298-305.	3.9	10
120	Application of Fluorescence with Polarized Light to Evaluate the Orientation of Dyes Adsorbed in Layered Materials. Journal of Fluorescence, 2006, 16, 233-240.	2.5	26
121	Orientation of Adsorbed Dyes in the Interlayer Space of Clays. 1. Anisotropy of Rhodamine 6G in Laponite Films by Vis-Absorption with Polarized Light. Chemistry of Materials, 2005, 17, 4134-4141.	6.7	48
122	Structural, photophysical and lasing properties of pyrromethene dyes. International Reviews in Physical Chemistry, 2005, 24, 339-374.	2.3	137
123	Characterization of Rhodamine 6G Aggregates Intercalated in Solid Thin Films of Laponite Clay. 2 Fluorescence Spectroscopy. Journal of Physical Chemistry B, 2005, 109, 7443-7450.	2.6	181
124	Theoretical study of the ground and excited electronic states of pyrromethene 546 laser dye and related compounds. Chemical Physics, 2004, 296, 13-22.	1.9	48
125	Photophysical properties of a new 8-phenyl analogue of the laser dye PM567 in different solvents: internal conversion mechanisms. Chemical Physics Letters, 2004, 385, 29-35.	2.6	68
126	8-Phenyl-Substituted Dipyrromethene·BF2Complexes as Highly Efficient and Photostable Laser Dyes. Journal of Physical Chemistry A, 2004, 108, 3315-3323.	2.5	79

#	Article	IF	CITATIONS
127	Characterization of Supported Solid Thin Films of Laponite Clay. Intercalation of Rhodamine 6G Laser Dye. Langmuir, 2004, 20, 5709-5717.	3.5	60
128	Structural and spectroscopic characteristics of Pyrromethene 567 laser dye. A theoretical approach. Physical Chemistry Chemical Physics, 2004, 6, 4247-4253.	2.8	35
129	Characterization of Rhodamine 6G Aggregates Intercalated in Solid Thin Films of Laponite Clay. 1. Absorption Spectroscopy. Journal of Physical Chemistry B, 2004, 108, 20030-20037.	2.6	84
130	Photophysical Properties of the Pyrromethene 597 Dye:  Solvent Effect. Journal of Physical Chemistry A, 2004, 108, 5503-5508.	2.5	94
131	Photophysical and Lasing Properties of New Analogs of the Boron–dipyrromethene Laser Dye Pyrromethene 567 Incorporated into or Covalently Bounded to Solid Matrices of Poly(methyl) Tj ETQq1 1 0.7843	61 4. æBT/(Ov æd ock 10
132	Adsorption of Rhodamine 3B Dye on Saponite Colloidal Particles in Aqueous Suspensions. Langmuir, 2002, 18, 2658-2664.	3.5	52
133	Photophysical and Lasing Properties of New Analogs of the Boronâ 'Dipyrromethene Laser Dye PM567 in Liquid Solution. Journal of Physical Chemistry A, 2002, 106, 7736-7742.	2.5	116
134	Linde Type L Zeolite: A Privileged Porous Support to Develop Photoactive and Catalytic Nanomaterials. , 0, , .		3
135	Tailoring the Photophysical Signatures of BODIPY Dyes: Toward Fluorescence Standards across the Visible Spectral Region. , 0, , .		5
136	Balizko molekula fotoaktibo multifuntzionala biomedikuntzarako. Ekaia (journal), 0, , .	0.0	0
137	Development of molecular cassettes for the excitation energy transfer in the		0