Kimberley M Mellor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6436090/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Myocardial autophagy activation and suppressed survival signaling is associated with insulin resistance in fructose-fed mice. Journal of Molecular and Cellular Cardiology, 2011, 50, 1035-1043.	0.9	179
2	Myocardial stress and autophagy: mechanisms and potential therapies. Nature Reviews Cardiology, 2017, 14, 412-425.	6.1	133
3	Myocardial glycophagy — A specific glycogen handling response to metabolic stress is accentuated in the female heart. Journal of Molecular and Cellular Cardiology, 2013, 65, 67-75.	0.9	66
4	Myocardial autophagic energy stress responses—macroautophagy, mitophagy, and glycophagy. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H1194-H1204.	1.5	57
5	High-fructose diet elevates myocardial superoxide generation in mice in the absence of cardiac hypertrophy. Nutrition, 2010, 26, 842-848.	1.1	52
6	Autophagy anomalies in the diabetic myocardium. Autophagy, 2011, 7, 1263-1267.	4.3	49
7	Fructose diet treatment in mice induces fundamental disturbance of cardiomyocyte Ca ²⁺ handling and myofilament responsiveness. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H964-H972.	1.5	48
8	Reactive oxygen species and insulinâ€resistant cardiomyopathy. Clinical and Experimental Pharmacology and Physiology, 2010, 37, 222-228.	0.9	44
9	Aromatase Deficiency Confers Paradoxical Postischemic Cardioprotection. Endocrinology, 2011, 152, 4937-4947.	1.4	43
10	Cardiomyocyte glycophagy is regulated by insulin and exposure to high extracellular glucose. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1240-H1245.	1.5	42
11	Elevated dietary sugar and the heart: experimental models and myocardial remodeling. Canadian Journal of Physiology and Pharmacology, 2010, 88, 525-540.	0.7	40
12	Diastolic dysfunction is more apparent in STZ-induced diabetic female mice, despite less pronounced hyperglycemia. Scientific Reports, 2018, 8, 2346.	1.6	38
13	Diabetic Cardiomyopathy: The Case for a Role of Fructose in Disease Etiology. Diabetes, 2016, 65, 3521-3528.	0.3	37
14	Heritable pathologic cardiac hypertrophy in adulthood is preceded by neonatal cardiac growth restriction. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R672-R680.	0.9	31
15	Myocardial insulin resistance, metabolic stress and autophagy in diabetes. Clinical and Experimental Pharmacology and Physiology, 2013, 40, 56-61.	0.9	28
16	Myocardial glycogen dynamics: New perspectives on disease mechanisms. Clinical and Experimental Pharmacology and Physiology, 2015, 42, 415-425.	0.9	28
17	Fructose Modulates Cardiomyocyte Excitation-Contraction Coupling and Ca2+ Handling In Vitro. PLoS ONE, 2011, 6, e25204.	1.1	28
18	Cardiomyocyte Functional Etiology in Heart Failure With Preserved Ejection Fraction Is Distinctive—A New Preclinical Model. Journal of the American Heart Association, 2018, 7, .	1.6	27

KIMBERLEY M MELLOR

#	Article	IF	CITATIONS
19	Ageing-related cardiomyocyte functional decline is sex and angiotensin II dependent. Age, 2014, 36, 9630.	3.0	24
20	Glucose as an agent of post-translational modification in diabetes — New cardiac epigenetic insights. Life Sciences, 2015, 129, 48-53.	2.0	24
21	Sex, sex steroids, and diabetic cardiomyopathy: making the case for experimental focus. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H779-H792.	1.5	21
22	Does the intercept of the heat–stress relation provide an accurate estimate of cardiac activation heat?. Journal of Physiology, 2017, 595, 4725-4733.	1.3	20
23	Guidelines on models of diabetic heart disease. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 323, H176-H200.	1.5	20
24	Cardiac ischaemic stress: Cardiomyocyte Ca2+, sex and sex steroids. Clinical and Experimental Pharmacology and Physiology, 2011, 38, 717-723.	0.9	19
25	Myocardial Energy Stress, Autophagy Induction, and Cardiomyocyte Functional Responses. Antioxidants and Redox Signaling, 2019, 31, 472-486.	2.5	19
26	Cardiac troponins may be irreversibly modified by glycation: novel potential mechanisms of cardiac performance modulation. Scientific Reports, 2018, 8, 16084.	1.6	17
27	The afterload-dependent peak efficiency of the isolated working rat heart is unaffected by streptozotocin-induced diabetes. Cardiovascular Diabetology, 2014, 13, 4.	2.7	16
28	Glycogen-autophagy: Molecular machinery and cellular mechanisms of glycophagy. Journal of Biological Chemistry, 2022, 298, 102093.	1.6	16
29	Autophagic predisposition in the insulin resistant diabetic heart. Life Sciences, 2013, 92, 616-620.	2.0	14
30	Myocardial and Cardiomyocyte Stress Resilience Is Enhanced in Aromatase-Deficient Female Mouse Hearts Through CaMKIII ´Activation. Endocrinology, 2015, 156, 1429-1440.	1.4	12
31	Elevated myocardial fructose and sorbitol levels are associated with diastolic dysfunction in diabetic patients, and cardiomyocyte lipid inclusions in vitro. Nutrition and Diabetes, 2021, 11, 8.	1.5	11
32	β ₁ â€Adrenoceptor, but not β ₂ â€adrenoceptor, subtype regulates heart rate in type 2 diabetic rats <i>in vivo</i> . Experimental Physiology, 2017, 102, 911-923.	0.9	8
33	Dietary omega-6 fatty acid replacement selectively impairs cardiac functional recovery after ischemia in female (but not male) rats. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H768-H780.	1.5	7
34	Angiotensin-(1-9). Journal of the American College of Cardiology, 2016, 68, 2667-2669.	1.2	5
35	Cardiac mechanical efficiency is preserved in primary cardiac hypertrophy despite impaired mechanical function. Journal of General Physiology, 2021, 153, .	0.9	2
36	Epigenetics and cardiovascular disease. Life Sciences, 2015, 129, 1-2.	2.0	1

3