
Vasantha Padmanabhan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6435988/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gestational exposure to high fat diets and bisphenol A alters metabolic outcomes in dams and offspring, but produces hepatic steatosis only in dams. Chemosphere, 2022, 286, 131645.	4.2	5
2	Developmental Programming: Prenatal Testosterone Excess on Liver and Muscle Coding and Noncoding RNA in Female Sheep. Endocrinology, 2022, 163, .	1.4	4
3	Polycystic ovary syndrome as a plausible evolutionary outcome of metabolic adaptation. Reproductive Biology and Endocrinology, 2022, 20, 12.	1.4	28
4	Maternal and neonatal one-carbon metabolites and the epigenome-wide infant response. Journal of Nutritional Biochemistry, 2022, 101, 108938.	1.9	4
5	Sexual dimorphism in testosterone programming of cardiomyocyte development in sheep. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H607-H621.	1.5	3
6	Prenatal Exposures to Common Phthalates and Prevalent Phthalate Alternatives and Infant DNA Methylation at Birth. Frontiers in Genetics, 2022, 13, 793278.	1.1	9
7	Psychosocial and behavioral factors affecting inflammation among pregnant African American women. Brain, Behavior, & Immunity - Health, 2022, 22, 100452.	1.3	4
8	Human Ovarian Follicles Xenografted in Immunoisolating Capsules Survive Long Term Implantation in Mice. Frontiers in Endocrinology, 2022, 13, .	1.5	2
9	Pharmacokinetic comparison of three delivery systems for subcutaneous testosterone administration in female mice. General and Comparative Endocrinology, 2022, 327, 114090.	0.8	5
10	Androgen signaling in adipose tissue, but less likely skeletal muscle, mediates development of metabolic traits in a PCOS mouse model. American Journal of Physiology - Endocrinology and Metabolism, 2022, 323, E145-E158.	1.8	6
11	Developmental programming: Impact of prenatal bisphenol-A exposure on liver and muscle transcriptome of female sheep. Toxicology and Applied Pharmacology, 2022, 451, 116161.	1.3	8
12	Associations Between Prenatal Urinary Biomarkers of Phthalate Exposure and Preterm Birth. JAMA Pediatrics, 2022, 176, 895.	3.3	31
13	Association of Maternal-Neonatal Steroids With Early Pregnancy Endocrine Disrupting Chemicals and Pregnancy Outcomes. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 665-687.	1.8	20
14	Impact of gestational exposure to endocrine disrupting chemicals on pregnancy and birth outcomes. Advances in Pharmacology, 2021, 92, 279-346.	1.2	3
15	Praegnatio Perturbatio—Impact of Endocrine-Disrupting Chemicals. Endocrine Reviews, 2021, 42, 295-353.	8.9	43
16	Neurokinin 3 Receptor Antagonism Ameliorates Key Metabolic Features in a Hyperandrogenic PCOS Mouse Model. Endocrinology, 2021, 162, .	1.4	19
17	Developmental programming: Adipose depot-specific transcriptional regulation by prenatal testosterone excess in a sheep model of PCOS. Molecular and Cellular Endocrinology, 2021, 523, 111137.	1.6	7
18	Developmental programming: Metabolic tissue-specific changes in endoplasmic reticulum stress, mitochondrial oxidative and telomere length status induced by prenatal testosterone excess in the female sheep. Molecular and Cellular Endocrinology, 2021, 526, 111207.	1.6	2

#	Article	IF	CITATIONS
19	Reversibility of testosterone-induced acyclicity after testosterone cessation in a transgender mouse model. F&S Science, 2021, 2, 116-123.	0.5	10
20	Considering environmental exposures to per- and polyfluoroalkyl substances (PFAS) as risk factors for hypertensive disorders of pregnancy. Environmental Research, 2021, 197, 111113.	3.7	40
21	Capitalizing on transcriptome profiling to optimize and identify targets for promoting early murine folliculogenesis in vitro. Scientific Reports, 2021, 11, 12517.	1.6	7
22	Impact of an online multicomponent very-low-carbohydrate program in women with polycystic ovary syndrome: a pilot study. F&S Reports, 2021, 2, 386-395.	0.4	3
23	Maternal 11-ketoandrostenedione rises through normal pregnancy and is the dominant 11-oxygenated androgen in cord blood. Journal of Clinical Endocrinology and Metabolism, 2021, , .	1.8	4
24	Maternal Exposure to Environmental Disruptors and Sexually Dimorphic Changes in Maternal and Neonatal Oxidative Stress. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 492-505.	1.8	24
25	Neuroendocrine, autocrine, and paracrine control of follicle-stimulating hormone secretion. Molecular and Cellular Endocrinology, 2020, 500, 110632.	1.6	23
26	Developmental programming: Prenatal bisphenol A treatment disrupts mediators of placental function in sheep. Chemosphere, 2020, 243, 125301.	4.2	26
27	Developmental programming: Adipose depot-specific changes and thermogenic adipocyte distribution in the female sheep. Molecular and Cellular Endocrinology, 2020, 503, 110691.	1.6	7
28	Stress, Sex, and Sugar: Glucocorticoids and Sex-Steroid Crosstalk in the Sex-Specific Misprogramming of Metabolism. Journal of the Endocrine Society, 2020, 4, bvaa087.	0.1	25
29	Developmental programming: gestational testosterone excess disrupts LH secretion in the female sheep fetus. Reproductive Biology and Endocrinology, 2020, 18, 106.	1.4	6
30	Developmental programming: Prenatal testosterone excess disrupts pancreatic islet developmental trajectory in female sheep. Molecular and Cellular Endocrinology, 2020, 518, 110950.	1.6	3
31	Hormonal Stimulation of Human Ovarian Xenografts in Mice: Studying Folliculogenesis, Activation, and Oocyte Maturation. Endocrinology, 2020, 161, .	1.4	5
32	Maternal lipid levels across pregnancy impact the umbilical cord blood lipidome and infant birth weight. Scientific Reports, 2020, 10, 14209.	1.6	33
33	REVERSIBILITY OF HORMONAL AND CYCLIC DISRUPTIONS IN A TRANSGENDER MOUSE MODEL AFTER CESSATION OF TESTOSTERONE THERAPY. Fertility and Sterility, 2020, 114, e198.	0.5	1
34	Maternal lipodome across pregnancy is associated with the neonatal DNA methylome. Epigenomics, 2020, 12, 2077-2092.	1.0	6
35	Developmental programming: Transcriptional regulation of visceral and subcutaneous adipose by prenatal bisphenol-A in female sheep. Chemosphere, 2020, 255, 127000.	4.2	8
36	Developmental programming: Prenatal testosterone-induced changes in epigenetic modulators and gene expression in metabolic tissues of female sheep. Molecular and Cellular Endocrinology, 2020, 514, 110913.	1.6	10

Vasantha Padmanabhan

#	Article	IF	CITATIONS
37	Developmental Programming: Sheep Granulosa and Theca Cell–Specific Transcriptional Regulation by Prenatal Testosterone. Endocrinology, 2020, 161, .	1.4	4
38	Impact of Exogenous Testosterone on Reproduction in Transgender Men. Endocrinology, 2020, 161, .	1.4	41
39	Developmental Programming: Prenatal Testosterone Excess on Ovarian SF1/DAX1/FOXO3. Reproductive Sciences, 2020, 27, 342-354.	1.1	3
40	Developmental programming: prenatal testosterone-induced epigenetic modulation and its effect on gene expression in sheep ovaryâ€. Biology of Reproduction, 2020, 102, 1045-1054.	1.2	19
41	Androgen Action in Adipose Tissue and the Brain are Key Mediators in the Development of PCOS Traits in a Mouse Model. Endocrinology, 2020, 161, .	1.4	31
42	Animal Models to Understand the Etiology and Pathophysiology of Polycystic Ovary Syndrome. Endocrine Reviews, 2020, 41, .	8.9	162
43	Maternal environmental exposure to bisphenols and epigenome-wide DNA methylation in infant cord blood. Environmental Epigenetics, 2020, 6, dvaa021.	0.9	20
44	Developmental programming of insulin resistance: are androgens the culprits?. Journal of Endocrinology, 2020, 245, R23-R48.	1.2	15
45	Mechanisms of intergenerational transmission of polycystic ovary syndrome. Reproduction, 2020, 159, R1-R13.	1.1	62
46	The ovarian stroma as a new frontier. Reproduction, 2020, 160, R25-R39.	1.1	92
47	Lactational exposure to polychlorinated biphenyls is higher in overweight /obese women and associated with altered infant growth trajectory: A pilot study. Current Research in Toxicology, 2020, 1, 133-140.	1.3	7
48	Developmental Programming of PCOS Traits: Insights from the Sheep. Medical Sciences (Basel,) Tj ETQq0 0 0 rgE	BT /Qverloo 1.3	ck 10 Tf 50 3 18
49	Developmental programming: Sexâ€specific programming of growth upon prenatal bisphenol A exposure. Journal of Applied Toxicology, 2019, 39, 1516-1531.	1.4	14
50	Prenatal Testosterone Exposure Alters GABAergic Synaptic Inputs to GnRH and KNDy Neurons in a Sheep Model of Polycystic Ovarian Syndrome. Endocrinology, 2019, 160, 2529-2542.	1.4	36
51	Reproductive function in a transgender mouse model following cessation of testosterone. Fertility and Sterility, 2019, 112, e59.	0.5	0
52	Prenatal Testosterone Excess Disrupts Placental Function in a Sheep Model of Polycystic Ovary Syndrome. Endocrinology, 2019, 160, 2663-2672.	1.4	23
53	Developmental Programming: Contribution of Epigenetic Enzymes to Antral Follicular Defects in the Sheep Model of PCOS. Endocrinology, 2019, 160, 2471-2484.	1.4	16

⁵⁴A mouse model to investigate the impact of testosterone therapy on reproduction in transgender men.
Human Reproduction, 2019, 34, 2009-2017.0.434

#	Article	IF	CITATIONS
55	A Narrative Review of Placental Contribution to Adverse Pregnancy Outcomes in Women With Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 5299-5315.	1.8	44
56	First trimester maternal exposures to endocrine disrupting chemicals and metals and fetal size in the Michigan Mother–Infant Pairs study. Journal of Developmental Origins of Health and Disease, 2019, 10, 447-458.	0.7	51
57	Adipose-derived stem cell-secreted factors promote early stage follicle development in a biomimetic matrix. Biomaterials Science, 2019, 7, 571-580.	2.6	22
58	Adipose-derived stem cells promote survival, growth, and maturation of early-stage murine follicles. Stem Cell Research and Therapy, 2019, 10, 102.	2.4	31
59	Developmental programming: Changes in mediators of insulin sensitivity in prenatal bisphenol A-treated female sheep. Reproductive Toxicology, 2019, 85, 110-122.	1.3	20
60	Early pregnancy exposure to endocrine disrupting chemical mixtures are associated with inflammatory changes in maternal and neonatal circulation. Scientific Reports, 2019, 9, 5422.	1.6	87
61	Interventions to Address Environmental Metabolism-Disrupting Chemicals: Changing the Narrative to Empower Action to Restore Metabolic Health. Frontiers in Endocrinology, 2019, 10, 33.	1.5	41
62	Prenatal Steroids and Metabolic Dysfunction: Lessons from Sheep. Annual Review of Animal Biosciences, 2019, 7, 337-360.	3.6	19
63	MON-202 Changes in the Expression of Epigenetic Enzymes Induced by Prenatal Testosterone Excess May Underlie the Antral Follicular Defects in the Sheep Model of PCOS. Journal of the Endocrine Society, 2019, 3, .	0.1	0
64	Maternal levels of endocrine disrupting chemicals in the first trimester of pregnancy are associated with infant cord blood DNA methylation. Epigenetics, 2018, 13, 301-309.	1.3	70
65	Developmental Programming: Impact of Prenatal Testosterone Excess on Steroidal Machinery and Cell Differentiation Markers in Visceral Adipocytes of Female Sheep. Reproductive Sciences, 2018, 25, 1010-1023.	1.1	28
66	Developmental Programming: Gestational Exposure to Excess Testosterone Alters Expression of Ovarian Matrix Metalloproteases and Their Target Proteins. Reproductive Sciences, 2018, 25, 882-892.	1.1	18
67	Sexually Dimorphic Impact of Chromium Accumulation on Human Placental Oxidative Stress and Apoptosis. Toxicological Sciences, 2018, 161, 375-387.	1.4	35
68	Development of a mouse model to investigate the reproductive effects of testosterone (t) administration in transgender men. Fertility and Sterility, 2018, 110, e21.	0.5	1
69	Ovarian and extra-ovarian mediators in the development of polycystic ovary syndrome. Journal of Molecular Endocrinology, 2018, 61, R161-R184.	1.1	26
70	Hypothalamus–Pituitary–Ovary Axis. , 2018, , 121-129.		8
71	Obesogenic Endocrine Disrupting Chemicals: Identifying Knowledge Gaps. Trends in Endocrinology and Metabolism, 2018, 29, 607-625.	3.1	80
72	Lactational programming of glucose homeostasis: a window of opportunity. Reproduction, 2018, 156, R23-R42.	1.1	49

#	Article	IF	CITATIONS
73	Developmental Programming of Ovarian Functions and Dysfunctions. Vitamins and Hormones, 2018, 107, 377-422.	0.7	20
74	Developmental programming: Interaction between prenatal BPA and postnatal overfeeding on cardiac tissue gene expression in female sheep. Environmental and Molecular Mutagenesis, 2017, 58, 4-18.	0.9	10
75	Effects of prenatal bisphenol-A exposure and postnatal overfeeding on cardiovascular function in female sheep. Journal of Developmental Origins of Health and Disease, 2017, 8, 65-74.	0.7	26
76	Gestational Hyperandrogenism in Developmental Programming. Endocrinology, 2017, 158, 199-212.	1.4	70
77	Impaired branched-chain amino acid metabolism may underlie the nonalcoholic fatty liver disease-like pathology of neonatal testosterone-treated female rats. Scientific Reports, 2017, 7, 13167.	1.6	10
78	Developmental Programming: Impact of Gestational Steroid and Metabolic Milieus on Mediators of Insulin Sensitivity in Prenatal Testosterone–Treated Female Sheep. Endocrinology, 2017, 158, 2783-2798.	1.4	34
79	Prenatal Testosterone Programming of Insulin Resistance in theÂFemale Sheep. Advances in Experimental Medicine and Biology, 2017, 1043, 575-596.	0.8	17
80	Puberty arises with testicular alterations and defective AMH expression in rams prenatally exposed to testosterone. Domestic Animal Endocrinology, 2017, 61, 100-107.	0.8	14
81	Placental histology and neutrophil extracellular traps in lupus and pre-eclampsia pregnancies. Lupus Science and Medicine, 2016, 3, e000134.	1.1	78
82	Prenatal programming: adverse cardiac programming by gestational testosterone excess. Scientific Reports, 2016, 6, 28335.	1.6	35
83	Developmental programming: postnatal estradiol modulation of prenatally organized reproductive neuroendocrine function in sheep. Reproduction, 2016, 152, 139-150.	1.1	6
84	Developmental Programming, a Pathway to Disease. Endocrinology, 2016, 157, 1328-1340.	1.4	166
85	Developmental Programming: Prenatal Testosterone Excess and Insulin Signaling Disruptions in Female Sheep1. Biology of Reproduction, 2016, 94, 113.	1.2	33
86	Maternal phthalate exposure during early pregnancy and at delivery in relation to gestational age and size at birth: A preliminary analysis. Reproductive Toxicology, 2016, 65, 59-66.	1.3	63
87	Prenatal testosterone exposure decreases colocalization of insulin receptors in kisspeptin/neurokinin B/dynorphin and agoutiâ€related peptide neurons of the adult ewe. European Journal of Neuroscience, 2016, 44, 2557-2568.	1.2	21
88	Developmental programming: rescuing disruptions in preovulatory follicle growth and steroidogenesis from prenatal testosterone disruption. Journal of Ovarian Research, 2016, 9, 39.	1.3	12
89	Lipid metabolism is associated with developmental epigenetic programming. Scientific Reports, 2016, 6, 34857.	1.6	33
90	Developmental Programming: Insulin Sensitizer Prevents the GnRH-Stimulated LH Hypersecretion in a Sheep Model of PCOS. Endocrinology, 2016, 157, 4641-4653.	1.4	25

#	Article	IF	CITATIONS
91	Developmental Programming: Impact of Gestational Steroid and Metabolic Milieus on Adiposity and Insulin Sensitivity in Prenatal Testosterone-Treated Female Sheep. Endocrinology, 2016, 157, 522-535.	1.4	51
92	Developmental programming: interaction between prenatal BPA exposure and postnatal adiposity on metabolic variables in female sheep. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E238-E247.	1.8	46
93	Effect of maternal PCOS and PCOS-like phenotype on the offspring's health. Molecular and Cellular Endocrinology, 2016, 435, 29-39.	1.6	67
94	Sex differences and effects of prenatal exposure to excess testosterone on ventral tegmental area dopamine neurons in adult sheep. European Journal of Neuroscience, 2015, 41, 1157-1166.	1.2	21
95	Developmental Programming: Exposure to Testosterone Excess Disrupts Steroidal and Metabolic Environment in Pregnant Sheep. Endocrinology, 2015, 156, 2323-2337.	1.4	41
96	Gender-Specific Effects on Gestational Length and Birth Weight by Early Pregnancy BPA Exposure. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E1394-E1403.	1.8	100
97	Assessing human health risk to endocrine disrupting chemicals: a focus on prenatal exposures and oxidative stress. Endocrine Disruptors (Austin, Tex), 2015, 3, e1069916.	1.1	30
98	Impact of Gestational Bisphenol A on Oxidative Stress and Free Fatty Acids: Human Association and Interspecies Animal Testing Studies. Endocrinology, 2015, 156, 911-922.	1.4	58
99	Steroidogenic versus Metabolic Programming of Reproductive Neuroendocrine, Ovarian and Metabolic Dysfunctions. Neuroendocrinology, 2015, 102, 226-237.	1.2	57
100	Developmental Programming: Does Prenatal Steroid Excess Disrupt the Ovarian VEGF System in Sheep?1. Biology of Reproduction, 2015, 93, 58.	1.2	16
101	Prenatal Testosterone Treatment Leads to Changes in the Morphology of KNDy Neurons, Their Inputs, and Projections to GnRH Cells in Female Sheep. Endocrinology, 2015, 156, 3277-3291.	1.4	55
102	Developmental Programming: Prenatal and Postnatal Androgen Antagonist and Insulin Sensitizer Interventions Prevent Advancement of Puberty and Improve LH Surge Dynamics in Prenatal Testosterone-Treated Sheep. Endocrinology, 2015, 156, 2678-2692.	1.4	46
103	Prenatal Testosterone Excess Decreases Neurokinin 3 Receptor Immunoreactivity within the Arcuate Nucleus <scp>KND</scp> y Cell Population. Journal of Neuroendocrinology, 2015, 27, 100-110.	1.2	26
104	Evolutionary conservation and modulation of a juvenile growth-regulating genetic program. Journal of Molecular Endocrinology, 2014, 52, 269-277.	1.1	9
105	Bisphenol A and Reproductive Health: Update of Experimental and Human Evidence, 2007–2013. Environmental Health Perspectives, 2014, 122, 775-786.	2.8	439
106	A round robin approach to the analysis of bisphenol a (BPA) in human blood samples. Environmental Health, 2014, 13, 25.	1.7	84
107	REPRODUCTION SYMPOSIUM: Developmental programming of reproductive and metabolic health1,2. Journal of Animal Science, 2014, 92, 3199-3210.	0.2	54
108	Developmental Programming. Reproductive Sciences, 2014, 21, 444-455.	1.1	9

#	Article	IF	CITATIONS
109	Developmental Programming: Prenatal Steroid Excess Disrupts Key Members of Intraovarian Steroidogenic Pathway in Sheep. Endocrinology, 2014, 155, 3649-3660.	1.4	30
110	Developmental programing: impact of testosterone on placental differentiation. Reproduction, 2014, 148, 199-209.	1.1	47
111	Developmental programming: Prenatal BPA treatment disrupts timing of LH surge and ovarian follicular wave dynamics in adult sheep. Toxicology and Applied Pharmacology, 2014, 279, 119-128.	1.3	26
112	Animal models of the polycystic ovary syndrome phenotype. Steroids, 2013, 78, 734-740.	0.8	111
113	Developmental programming: Impact of prenatal exposure to bisphenol-A and methoxychlor on steroid feedbacks in sheep. Toxicology and Applied Pharmacology, 2013, 268, 300-308.	1.3	13
114	Altered testicular development as a consequence of increase number of sertoli cell in male lambs exposed prenatally to excess testosterone. Endocrine, 2013, 43, 705-713.	1.1	22
115	Sheep models of polycystic ovary syndrome phenotype. Molecular and Cellular Endocrinology, 2013, 373, 8-20.	1.6	180
116	Developmental Programming: Postnatal Steroids Complete Prenatal Steroid Actions to Differentially Organize the GnRH Surge Mechanism and Reproductive Behavior in Female Sheep. Endocrinology, 2013, 154, 1612-1623.	1.4	27
117	Developmental Programming: Gestational Bisphenol-A Treatment Alters Trajectory of Fetal Ovarian Gene Expression. Endocrinology, 2013, 154, 1873-1884.	1.4	129
118	Pituitary and testis responsiveness of young male sheep exposed to testosterone excess during fetal development. Reproduction, 2013, 145, 567-576.	1.1	18
119	Developmental Programming: Impact of Prenatal Testosterone Excess on Insulin Sensitivity, Adiposity, and Free Fatty Acid Profile in Postpubertal Female Sheep. Endocrinology, 2013, 154, 1731-1742.	1.4	59
120	Bisphenol A and Chronic Disease Risk Factors in US Children. Pediatrics, 2013, 132, e637-e645.	1.0	92
121	Effects of cycle stage on regionalised galanin, galanin receptors 1–3, GNRH and GNRH receptor mRNA expression in the ovine hypothalamus. Journal of Endocrinology, 2012, 212, 353-361.	1.2	11
122	Developmental Programming: Prenatal and Postnatal Contribution of Androgens and Insulin in the Reprogramming of Estradiol Positive Feedback Disruptions in Prenatal Testosterone-Treated Sheep. Endocrinology, 2012, 153, 2813-2822.	1.4	30
123	Developmental Programming: Impact of Prenatal Testosterone Excess on Ovarian Cell Proliferation and Apoptotic Factors in Sheep1. Biology of Reproduction, 2012, 87, 22, 1-10.	1.2	29
124	Neuroendocrine Control of FSH Secretion: IV. Hypothalamic Control of Pituitary FSH-Regulatory Proteins and Their Relationship to Changes in FSH Synthesis and Secretion1. Biology of Reproduction, 2012, 86, 171.	1.2	22
125	Developmental programming: impact of prenatal testosterone treatment and postnatal obesity on ovarian follicular dynamics. Journal of Developmental Origins of Health and Disease, 2012, 3, 276-286.	0.7	10
126	Developmental programming: prenatal testosterone excess disrupts anti-Müllerian hormone expression in preantral and antral follicles. Fertility and Sterility, 2012, 97, 748-756.	0.5	50

#	Article	IF	CITATIONS
127	Antimüllerian hormone levels are independently related to ovarian hyperandrogenism and polycystic ovaries. Fertility and Sterility, 2012, 98, 242-249.e4.	0.5	71
128	Delivery type not associated with global methylation at birth. Clinical Epigenetics, 2012, 4, 8.	1.8	40
129	Local Mixed-Effects Fitting for Detecting Reproductive Hormone Surge Times. Statistics in Biosciences, 2012, 4, 245-261.	0.6	0
130	Urinary, Circulating, and Tissue Biomonitoring Studies Indicate Widespread Exposure to Bisphenol A. Ciencia E Saude Coletiva, 2012, 17, 407-434.	0.1	163
131	Developmental Programming: Gestational Testosterone Treatment Alters Fetal Ovarian Gene Expression. Endocrinology, 2011, 152, 4974-4983.	1.4	52
132	Insulin resistance influences central opioid activity in polycystic ovary syndrome. Fertility and Sterility, 2011, 95, 2494-2498.	0.5	16
133	Developmental Programming: Impact of Excess Prenatal Testosterone on Intrauterine Fetal Endocrine Milieu and Growth in Sheep1. Biology of Reproduction, 2011, 84, 87-96.	1.2	99
134	Insulin Resistance Influences Central Opioid Activity in Polycystic Ovary Syndrome. Obstetrical and Gynecological Survey, 2011, 66, 693-695.	0.2	0
135	Prenatal Programming by Testosterone of Hypothalamic Metabolic Control Neurones in the Ewe. Journal of Neuroendocrinology, 2011, 23, 401-411.	1.2	40
136	Developmental Programming: Reproductive Endocrinopathies in the Adult Female Sheep After Prenatal Testosterone Treatment Are Reflected in Altered Ontogeny of GnRH Afferents. Endocrinology, 2011, 152, 4288-4297.	1.4	15
137	Developmental Origin of Reproductive and Metabolic Dysfunctions: Androgenic Versus Estrogenic Reprogramming. Seminars in Reproductive Medicine, 2011, 29, 173-186.	0.5	64
138	Prenatal testosterone and dihydrotestosterone exposure disrupts ovine testicular development. Reproduction, 2011, 142, 167-173.	1.1	27
139	Developmental Programming: Impact of Prenatal Testosterone Excess on Ovarian Cell Proliferation and Survival Factors Biology of Reproduction, 2011, 85, 641-641.	1.2	1
140	Developmental Programming: Prenatal Testosterone and Postnatal Obesity Induce Free Fatty Acid Imbalance in Sheep. , 2011, , P1-595-P1-595.		1
141	Developmental Programming: Adipose Tissue Distribution in Prenatal Testosterone-Treated Sheep. , 2011, , P2-443-P2-443.		1
142	Developmental programming: Impact of fetal exposure to endocrine-disrupting chemicals on gonadotropin-releasing hormone and estrogen receptor mRNA in sheep hypothalamus. Toxicology and Applied Pharmacology, 2010, 247, 98-104.	1.3	63
143	Developmental reprogramming of reproductive and metabolic dysfunction in sheep: native steroids vs. environmental steroid receptor modulators. Journal of Developmental and Physical Disabilities, 2010, 33, 394-404.	3.6	63
144	Biomonitoring Studies Should Be Used by Regulatory Agencies to Assess Human Exposure Levels and Safety of Bisphenol A. Environmental Health Perspectives, 2010, 118, 1051-1054.	2.8	102

#	Article	IF	CITATIONS
145	Developmental Programming: Effect of Prenatal Steroid Excess on Intraovarian Components of Insulin Signaling Pathway and Related Proteins in Sheep1. Biology of Reproduction, 2010, 82, 1065-1075.	1.2	62
146	Flawed Experimental Design Reveals the Need for Guidelines Requiring Appropriate Positive Controls in Endocrine Disruption Research. Toxicological Sciences, 2010, 115, 612-613.	1.4	72
147	Urinary, Circulating, and Tissue Biomonitoring Studies Indicate Widespread Exposure to Bisphenol A. Environmental Health Perspectives, 2010, 118, 1055-1070.	2.8	1,038
148	Developmental Programming: Impact of Prenatal Testosterone Excess and Postnatal Weight Gain on Insulin Sensitivity Index and Transfer of Traits to Offspring of Overweight Females. Endocrinology, 2010, 151, 595-605.	1.4	118
149	Developmental Programming: Differential Effects of Prenatal Testosterone Excess on Insulin Target Tissues. Endocrinology, 2010, 151, 5165-5173.	1.4	49
150	Developmental Programming: Insulin Sensitizer Treatment Improves Reproductive Function in Prenatal Testosterone-Treated Female Sheep. Endocrinology, 2010, 151, 4007-4017.	1.4	28
151	The Kisspeptin/Neurokinin B/Dynorphin (KNDy) Cell Population of the Arcuate Nucleus: Sex Differences and Effects of Prenatal Testosterone in Sheep. Endocrinology, 2010, 151, 301-311.	1.4	249
152	Bisphenol-A and disparities in birth outcomes: a review and directions for future research. Journal of Perinatology, 2010, 30, 2-9.	0.9	100
153	Developmental Programming: Gestational Testosterone Treatment Alters Fetal Ovarian Steroidogenic Gene Expression Biology of Reproduction, 2010, 83, 183-183.	1.2	1
154	Developmental Programming: Prenatal Testosterone Excess Disrupts Expression of Oocyte and Granulosa Cell Growth Factors in Sheep Biology of Reproduction, 2010, 83, 79-79.	1.2	1
155	Developmental Programming: Gestational Testosterone Excess Compromises Fetal Pancreatic Differentiation , 2010, , P3-489-P3-489.		1
156	Polycystic Ovary Syndrome — "A Riddle Wrapped in a Mystery inside an Enigma― Journal of Clinical Endocrinology and Metabolism, 2009, 94, 1883-1885.	1.8	30
157	Developmental Programming: Excess Weight Gain Amplifies the Effects of Prenatal Testosterone Excess On Reproductive Cyclicity—Implication for Polycystic Ovary Syndrome. Endocrinology, 2009, 150, 1456-1465.	1.4	61
158	Expression of mRNA for galanin, galanin-like peptide and galanin receptors 1–3 in the ovine hypothalamus and pituitary gland: effects of age and gender. Reproduction, 2009, 137, 141-150.	1.1	22
159	Sensitivity and specificity of pulse detection using a new deconvolution method. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E538-E544.	1.8	87
160	Developmental Programming: Contribution of Prenatal Androgen and Estrogen to Estradiol Feedback Systems and Periovulatory Hormonal Dynamics in Sheep1. Biology of Reproduction, 2009, 80, 718-725.	1.2	49
161	Juvenile Rank Can Predict Male-Typical Adult Mating Behavior in Female Sheep Treated Prenatally with Testosterone1. Biology of Reproduction, 2009, 80, 737-742.	1.2	9
162	Developmental programming: prenatal androgen excess disrupts ovarian steroid receptor balance. Reproduction, 2009, 137, 865-877.	1.1	114

#	Article	IF	CITATIONS
163	Developmental Programming: Differential Effects of Prenatal Testosterone and Dihydrotestosterone on Follicular Recruitment, Depletion of Follicular Reserve, and Ovarian Morphology in Sheep1. Biology of Reproduction, 2009, 80, 726-736.	1.2	106
164	Developmental Programming: Prenatal Testosterone Excess Has Differential Effects on the Developmental Trajectory of Members of the Insulin Signaling Cascade in Liver and Skeletal Muscle Biology of Reproduction, 2009, 81, 342-342.	1.2	1
165	Developmental Programming: Impact of Prenatal Testosterone Excess on Maternal and Fetal Steroid Milieu Biology of Reproduction, 2009, 81, 84-84.	1.2	2
166	Developmental Programming: Exogenous Gonadotropin Treatment Rescues Ovulatory Function But Does Not Completely Normalize Ovarian Function in Sheep Treated Prenatally with Testosterone1. Biology of Reproduction, 2008, 79, 686-695.	1.2	10
167	Maternal bisphenol-A levels at delivery: a looming problem?. Journal of Perinatology, 2008, 28, 258-263.	0.9	239
168	Developmental Programming: Impact of Prenatal Testosterone Excess on Pre- and Postnatal Gonadotropin Regulation in Sheep1. Biology of Reproduction, 2008, 78, 648-660.	1.2	55
169	Endocrine Antecedents of Polycystic Ovary Syndrome in Fetal and Infant Prenatally Androgenized Female Rhesus Monkeys1. Biology of Reproduction, 2008, 79, 154-163.	1.2	92
170	Developmental Programming: Deficits in Reproductive Hormone Dynamics and Ovulatory Outcomes in Prenatal, Testosterone-Treated Sheep1. Biology of Reproduction, 2008, 78, 636-647.	1.2	67
171	Differential Effects of Prenatal Testosterone Timing and Duration on Phenotypic and Behavioral Masculinization and Defeminization of Female Sheep1. Biology of Reproduction, 2008, 79, 43-50.	1.2	19
172	Insight into the Neuroendocrine Site and Cellular Mechanism by which Cortisol Suppresses Pituitary Responsiveness to Gonadotropin-Releasing Hormone. Endocrinology, 2008, 149, 767-773.	1.4	46
173	Prenatal Testosterone Excess Reduces Sperm Count and Motility. Endocrinology, 2008, 149, 6444-6448.	1.4	72
174	Black cohosh has central opioid activity in postmenopausal women. Menopause, 2008, 15, 832-840.	0.8	48
175	Polycystic Ovary Syndrome and Oocyte Developmental Competence. Obstetrical and Gynecological Survey, 2008, 63, 39-48.	0.2	111
176	Hypertension caused by prenatal testosterone excess in female sheep. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1837-E1841.	1.8	82
177	Developmental Programming: Follicular Persistence in Prenatal Testosterone-Treated Sheep Is Not Programmed by Androgenic Actions of Testosterone. Endocrinology, 2007, 148, 3532-3540.	1.4	65
178	Participation of vasoactive intestinal polypeptide in ovarian steroids production during the rat estrous cycle and in the development of estradiol valerate-induced polycystic ovary. Reproduction, 2007, 133, 147-154.	1.1	23
179	Developmental programming in sheep: Administration of testosterone during 60–90 days of pregnancy reduces breeding success and pregnancy outcome. Theriogenology, 2007, 67, 459-467.	0.9	38
180	Differential effects of aging on activin AÂand its binding protein, follistatin, across the menopause transition. Fertility and Sterility, 2007, 88, 1003-1005.	0.5	25

#	Article	IF	CITATIONS
181	Polycystic ovary syndrome and its developmental origins. Reviews in Endocrine and Metabolic Disorders, 2007, 8, 127-141.	2.6	245
182	Environment and origin of disease. Reviews in Endocrine and Metabolic Disorders, 2007, 8, 67-69.	2.6	8
183	Prenatal testosterone treatment alters LH and testosterone responsiveness to GnRH agonist in male sheep. Biological Research, 2007, 40, .	1.5	20
184	Novel concepts about normal sexual differentiation of reproductive neuroendocrine function and the developmental origins of female reproductive dysfunction: the sheep model. Reproduction in Domestic Ruminants, 2007, 6, 83-107.	0.1	14
185	Prenatal testosterone treatment alters LH and testosterone responsiveness to GnRH agonist in male sheep. Biological Research, 2007, 40, 329-38.	1.5	14
186	Contributions of androgen and estrogen to fetal programming of ovarian dysfunction. Reproductive Biology and Endocrinology, 2006, 4, 17.	1.4	89
187	Assessment of ovarian reserve by using the follicle-stimulating hormone isoform distribution pattern to predict the outcome of in vitro fertilization. Fertility and Sterility, 2006, 86, 1547-1549.	0.5	7
188	Prenatal testosterone excess programs reproductive and metabolic dysfunction in the female. Molecular and Cellular Endocrinology, 2006, 246, 165-174.	1.6	99
189	Programming of GnRH feedback controls timing puberty and adult reproductive activity. Molecular and Cellular Endocrinology, 2006, 254-255, 109-119.	1.6	55
190	Prenatal exposure to excess testosterone modifies the developmental trajectory of the insulin-like growth factor system in female sheep. Journal of Physiology, 2006, 572, 119-130.	1.3	47
191	Developmental origin of health and disease. Journal of Physiology, 2006, 572, 3-4.	1.3	8
192	The Role of Endogenous Growth Hormone-Releasing Hormone in Acromegaly. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 2185-2190.	1.8	9
193	Developmental Programming: Differential Effects of Prenatal Exposure to Bisphenol-A or Methoxychlor on Reproductive Function. Endocrinology, 2006, 147, 5956-5966.	1.4	131
194	Fetal Programming: Prenatal Testosterone Treatment Leads to Follicular Persistence/Luteal Defects; Partial Restoration of Ovarian Function by Cyclic Progesterone Treatment. Endocrinology, 2006, 147, 1997-2007.	1.4	111
195	Long-Term Exposure of Female Sheep to Physiologic Concentrations of Estradiol: Effects on the Onset and Maintenance of Reproductive Function, Pregnancy, and Social Development in Female Offspring1. Biology of Reproduction, 2006, 75, 844-852.	1.2	14
196	Animal Models and Fetal Programming of the Polycystic Ovary Syndrome. , 2006, , 259-272.		3
197	Postnatal developmental consequences of altered insulin sensitivity in female sheep treated prenatally with testosterone. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E801-E806.	1.8	120
198	Fetal Programming: Prenatal Testosterone Treatment Causes Intrauterine Growth Retardation, Reduces Ovarian Reserve and Increases Ovarian Follicular Recruitment. Endocrinology, 2005, 146, 3185-3193.	1.4	183

#	Article	IF	CITATIONS
199	Fetal Programming: Excess Prenatal Testosterone Reduces Postnatal Luteinizing Hormone, But Not Follicle-Stimulating Hormone Responsiveness, to Estradiol Negative Feedback in the Female. Endocrinology, 2005, 146, 4281-4291.	1.4	95
200	Diurnal changes in FSH-regulatory peptides and their relationship to gonadotrophins in pubertal girls. Human Reproduction, 2005, 20, 543-548.	0.4	15
201	Fetal Programming: Testosterone Exposure of the Female Sheep During Midgestation Disrupts the Dynamics of Its Adult Gonadotropin Secretion During the Periovulatory Period1. Biology of Reproduction, 2005, 72, 221-229.	1.2	39
202	Alterations in the ability of the bovine pituitary gland to secrete gonadotropins in vitro during the first follicle-stimulating hormone increase of the estrous cycle and in response to exogenous steroids. Domestic Animal Endocrinology, 2005, 28, 190-201.	0.8	7
203	Fetal Programming: Prenatal Testosterone Excess Leads to Fetal Growth Retardation and Postnatal Catch-Up Growth in Sheep. Endocrinology, 2004, 145, 790-798.	1.4	227
204	GnRH agonist stimulation of the pituitary–gonadal axis in children: age and sex differences in circulating inhibin-B and activin-A. Human Reproduction, 2004, 19, 2748-2758.	0.4	17
205	Sex differences in FSH-regulatory peptides in pubertal age boys and girls and effects of sex steroid treatment. Human Reproduction, 2004, 19, 1668-1676.	0.4	15
206	Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience, 2004, 127, 481-496.	1.1	788
207	Assessment of ovarian reserve using follicle stimulating hormone (FSH) isoforms to predict outcome with in vitro fertilization (IVF). Fertility and Sterility, 2004, 82, S202.	0.5	0
208	Prenatal Programming of Reproductive Neuroendocrine Function: Fetal Androgen Exposure Produces Progressive Disruption of Reproductive Cycles in Sheep. Endocrinology, 2003, 144, 1426-1434.	1.4	131
209	Prepubertal Administration of Estradiol Valerate Disrupts Cyclicity and Leads to Cystic Ovarian Morphology during Adult Life in the Rat: Role of Sympathetic Innervation. Endocrinology, 2003, 144, 4289-4297.	1.4	65
210	Neuroendocrine Control of Follicle-Stimulating Hormone (FSH) Secretion: III. Is There a Gonadotropin-Releasing Hormone-Independent Component of Episodic FSH Secretion in Ovariectomized and Luteal Phase Ewes?. Endocrinology, 2003, 144, 1380-1392.	1.4	35
211	Neuroendocrine Control of Follicle-Stimulating Hormone (FSH) Secretion: II. Is Follistatin-Induced Suppression of FSH Secretion Mediated via Changes in Activin Availability and Does It Involve Changes in Gonadotropin-Releasing Hormone Secretion?1. Biology of Reproduction, 2002, 66, 1395-1402.	1.2	16
212	Acidic Mix of FSH Isoforms Are Better Facilitators of Ovarian Follicular Maturation and E2 Production than the Less Acidic. Endocrinology, 2002, 143, 107-116.	1.4	36
213	Fetal Programming: Prenatal Androgen Disrupts Positive Feedback Actions of Estradiol but Does Not Affect Timing of Puberty in Female Sheep1. Biology of Reproduction, 2002, 66, 924-933.	1.2	99
214	The hypothalamic GnRH pulse generator is altered in ovulatory, premenopausal women: evidence from 24hr pulsatile LH studies. Fertility and Sterility, 2002, 78, S97.	0.5	7
215	In utero programming of sexually differentiated gonadotrophin releasing hormone (GnRH) secretion. Domestic Animal Endocrinology, 2002, 23, 43-52.	0.8	19
216	Prenatal exposure of the ovine fetus to androgens sexually differentiates the steroid feedback mechanisms that control gonadotropin releasing hormone secretion and disrupts ovarian cycles. Archives of Sexual Behavior, 2002, 31, 35-41.	1.2	38

#	Article	IF	CITATIONS
217	Hypothalamic, pituitary and gonadal regulation of FSH. Reproduction Supplement, 2002, 59, 67-82.	0.5	22
218	Sexual differentiation of the neuroendocrine control of gonadotrophin secretion: concepts derived from sheep models. Reproduction Supplement, 2002, 59, 83-99.	0.5	26
219	Dynamics of bioactive follicle-stimulating hormone secretion in women with polycystic ovary syndrome: effects of estradiol and progesterone. Fertility and Sterility, 2001, 75, 881-888.	0.5	9
220	The ovary in women is not the major source of circulating Activin-A but is for Inhibin-B Fertility and Sterility, 2001, 76, S51.	0.5	0
221	Intra-follicular activin availability is altered in prenatally-androgenized lambs. Molecular and Cellular Endocrinology, 2001, 185, 51-59.	1.6	106
222	Neuroendocrine vs. Paracrine Control of Follicle-Stimulating Hormone. Archives of Medical Research, 2001, 32, 533-543.	1.5	32
223	Ovarian Estrogen Receptor-β (ERβ) Regulation: I. Changes in ERβ Messenger RNA Expression Prior to Ovulation in the Ewe1. Biology of Reproduction, 2001, 65, 866-872.	1.2	24
224	Is there an FSH-releasing factor?. Reproduction, 2001, 121, 21-30.	1.1	78
225	ENDOCRINE, AUTOCRINE AND PARACRINE ACTIONS OF INHIBIN, ACTIVIN AND FOLLISTATIN ON FOLLICLE-STIMULATING HORMONE. , 2001, , 61-90.		2
226	FOLLISTATIN: FROM PUBERTY TO MENOPAUSE. , 2001, , 141-164.		2
227	Changes in serum inhibin, activin and follistatin concentrations during puberty in girls. Human Reproduction, 2000, 15, 1052-1057.	0.4	26
228	Differential effects of the charge variants of human follicle-stimulating hormone. Journal of Endocrinology, 2000, 165, 193-205.	1.2	60
229	Endocrine Alterations That Underlie Endotoxin-Induced Disruption of the Follicular Phase in Ewes1. Biology of Reproduction, 2000, 62, 45-53.	1.2	135
230	Ovarian Follicular Concentrations of Activin, Follistatin, Inhibin, Insulin-Like Growth Factor I (IGF-I), IGF-II, IGF-Binding Protein-2 (IGFBP-2), IGFBP-3, and Vascular Endothelial Growth Factor in Spontaneous Menstrual Cycles of Normal Women of Advanced Reproductive Age. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 4520-4525.	1.8	54
231	Follicle-stimulating isohormones: regulation and biological significance. Journal of Reproduction and Fertility Supplement, 1999, 54, 87-99.	0.1	10
232	Characterization of Endocrine Events During the Periestrous Period in Sheep After Estrous Synchronization with Controlled Internal Drug Release (CIDR) Device. Domestic Animal Endocrinology, 1998, 15, 23-34.	0.8	53
233	Resumption of Follicular Waves in Beef Cows is not Associated with Periparturient Changes in Follicle-Stimulating Hormone Heterogeneity Despite Major Changes in Steroid and Luteinizing Hormone Concentrations1. Biology of Reproduction, 1998, 58, 1445-1450.	1.2	46
234	Net Increase in Stimulatory Input Resulting from a Decrease in Inhibin B and an Increase in Activin A May Contribute in Part to the Rise in Follicular Phase Follicle-Stimulating Hormone of Aging Cycling Women1. Journal of Clinical Endocrinology and Metabolism, 1998, 83, 3302-3307.	1.8	106

#	Article	IF	CITATIONS
235	In Pubertal Girls, Naloxone Fails to Reverse the Suppression of Luteinizing Hormone Secretion by Estradiol1. Journal of Clinical Endocrinology and Metabolism, 1998, 83, 3501-3506.	1.8	17
236	A Two-Site Chemiluminescent Assay for Activin-Free Follistatin Reveals That Most Follistatin Circulating in Men and Normal Cycling Women Is in an Activin-Bound State ¹ . Journal of Clinical Endocrinology and Metabolism, 1998, 83, 851-858.	1.8	59
237	Glycoform composition of serum gonadotrophins through the normal menstrual cycle and in the post-menopausal state. Molecular Human Reproduction, 1998, 4, 631-639.	1.3	93
238	P-44. Circulating Levels of Activin Decrease in Response to Hormone Replacement Therapy (HRT). Menopause, 1998, 5, 267.	0.8	2
239	Follicle-stimulating hormone is secreted more irregularly than luteinizing hormone in both humans and sheep Journal of Clinical Investigation, 1998, 101, 1318-1324.	3.9	31
240	In Pubertal Girls, Naloxone Fails to Reverse the Suppression of Luteinizing Hormone Secretion by Estradiol. Journal of Clinical Endocrinology and Metabolism, 1998, 83, 3501-3506.	1.8	10
241	A Two-Site Chemiluminescent Assay for Activin-Free Follistatin Reveals That Most Follistatin Circulating in Men and Normal Cycling Women Is in an Activin-Bound State. Journal of Clinical Endocrinology and Metabolism, 1998, 83, 851-858.	1.8	38
242	Net Increase in Stimulatory Input Resulting from a Decrease in Inhibin B and an Increase in Activin A May Contribute in Part to the Rise in Follicular Phase Follicle-Stimulating Hormone of Aging Cycling Women. Journal of Clinical Endocrinology and Metabolism, 1998, 83, 3302-3307.	1.8	83
243	Neuroendocrine Control of Follicle-Stimulating Hormone (FSH) Secretion. I. Direct Evidence for Separate Episodic and Basal Components of FSH Secretion ¹ . Endocrinology, 1997, 138, 424-432.	1.4	81
244	Acute Effects of Estradiol Infusion and Naloxone on Luteinizing Hormone Secretion in Pubertal Boys1. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 4010-4014.	1.8	17
245	Estradiol Requirements for Induction and Maintenance of the Gonadotropin-Releasing Hormone Surge: Implications for Neuroendocrine Processing of the Estradiol Signal*. Endocrinology, 1997, 138, 5408-5414.	1.4	90
246	A novel approach to assess changes in endocrine secretion: analysis of GnRH antagonist (Nal-Glu) suppression of gonadotropin release in ovariectomized ewes. European Journal of Endocrinology, 1997, 136, 519-530.	1.9	7
247	In vivo Investigation of Hypothalamic Secretory Activity. Trends in Endocrinology and Metabolism, 1997, 8, 105-111.	3.1	1
248	Validation of a sensitive radioimmunoassay to measure serum follicle-stimulating hormone in cattle: correlation with biological activity. Animal Reproduction Science, 1997, 48, 123-136.	0.5	56
249	Nonclassical secretory dynamics of LH revealed by hypothalamo-hypophyseal portal sampling of sheep. Endocrine, 1997, 6, 133-143.	2.2	14
250	Acute Effects of Estradiol Infusion and Naloxone on Luteinizing Hormone Secretion in Pubertal Boys. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 4010-4014.	1.8	15
251	Circulating Concentrations of Dimeric Inhibin A and B in the Male Rhesus Monkey (Macaca mulatta). Journal of Clinical Endocrinology and Metabolism, 1997, 82, 2617-2621.	1.8	29
252	Development of a two-site solid-phase immunochemiluminescent assay for measurement of dimeric inhibin-A in human serum and other biological fluids. Clinical Chemistry, 1996, 42, 1159-1167.	1.5	10

#	Article	IF	CITATIONS
253	Age effects of follicle-stimulating hormone and pulsatile luteinizing hormone secretion across the menstrual cycle of premenopausal women Journal of Clinical Endocrinology and Metabolism, 1996, 81, 1512-1518.	1.8	70
254	Age effects of follicle-stimulating hormone and pulsatile luteinizing hormone secretion across the menstrual cycle of premenopausal women. Journal of Clinical Endocrinology and Metabolism, 1996, 81, 1512-1518.	1.8	73
255	Development of a two-site solid-phase immunochemiluminescent assay for measurement of dimeric inhibin-A in human serum and other biological fluids. Clinical Chemistry, 1996, 42, 1159-67.	1.5	1
256	Does estradiol induce the preovulatory gonadotropin-releasing hormone (GnRH) surge in the ewe by inducing a progressive change in the mode of operation of the GnRH neurosecretory system Endocrinology, 1995, 136, 5511-5519.	1.4	51
257	Evidence for Short or Ultrashort Loop Negative Feedback of Gonadotropin-Releasing Hormone Secretion. Neuroendocrinology, 1995, 62, 248-258.	1.2	89
258	Follicle-Stimulating Isohormones: Characterization and Physiological Relevance. Endocrine Reviews, 1995, 16, 765-787.	8.9	211
259	Are Immediate Early Genes Involved in Gonadotropin-Releasing Hormone Receptor Gene Regulation? Characterization of Changes in GnRH Receptor (GnRH-R), C-Fos, and CCC-Jun Messenger Ribonucleic Acids during the Ovine Estrous Cycle1. Biology of Reproduction, 1995, 53, 263-269.	1.2	34
260	Isolation of Nine Different Biologically and Immunologically Active Molecular Variants of Bovine Follicular Inhibin1. Biology of Reproduction, 1995, 53, 1478-1488.	1.2	48
261	Progesterone modulation of gonadotropin secretion by dispersed rat pituitary cells in culture. IV. Follicle-stimulating hormone synthesis and release. Molecular and Cellular Endocrinology, 1993, 91, 13-20.	1.6	9
262	Pituitary glycoprotein hormones in chronic renal failure: Evidence for an uncontrolled alpha-subunit release. Journal of Endocrinological Investigation, 1993, 16, 169-174.	1.8	14
263	Pulsatile administration of gonadotropin-releasing hormone does not alter the follicle-stimulating hormone (FSH) isoform distribution pattern of pituitary or circulating FSH in nutritionally growth-restricted ovariectomized lambs Endocrinology, 1993, 132, 1527-1536.	1.4	19
264	Serum Bioactive Luteinizing and Follicle-Stimulating Hormone Concentrations in Girls Increase during Puberty. Pediatric Research, 1993, 34, 829-833.	1.1	17
265	Hypothalamic versus Pituitary Stimulation of Luteinizing Hormone Secretion in the Prepubertal Female Lamb. Neuroendocrinology, 1993, 57, 467-475.	1.2	19
266	Serum bioactive gonadotropins during male puberty: a longitudinal study. Journal of Clinical Endocrinology and Metabolism, 1993, 76, 432-438.	1.8	19
267	Luteinizing hormone pulse characteristics in early pubertal boys are the same whether measured by radioimmuno- or immunofluorometric assay. Journal of Clinical Endocrinology and Metabolism, 1993, 76, 1173-1176.	1.8	1
268	Progesterone blocks the estradiol-induced gonadotropin discharge in the ewe by inhibiting the surge of gonadotropin-releasing hormone Endocrinology, 1992, 131, 208-212.	1.4	99
269	Effect of Nutritional Repletion on Pituitary and Serum Follicle-Stimulating Hormone Isoform Distribution in Growth-Retarded Lambs 1. Biology of Reproduction, 1992, 46, 964-971.	1.2	8
270	Circulating bioactive follicle-stimulating hormone and less acidic follicle-stimulating hormone isoforms increase during experimental induction of puberty in the female lamb Endocrinology, 1992, 131, 213-220.	1.4	44

#	Article	IF	CITATIONS
271	Bioactive follicle-stimulating hormone. Trends in Endocrinology and Metabolism, 1991, 2, 145-151.	3.1	11
272	Follicle-stimulating hormone signal transduction: Role of carbohydrate in aromatase induction in immature rat Sertoli cells. Molecular and Cellular Endocrinology, 1991, 79, 119-128.	1.6	30
273	Naloxone Does not Reverse the Suppressive Effects of Testosterone Infusion on Luteinizing Hormone Secretion in Pubertal Boys*. Journal of Clinical Endocrinology and Metabolism, 1991, 73, 1241-1247.	1.8	13
274	Metabolic Clearance of Human Follicle-Stimulating Hormone Assessed by Radioimmunoassay, Immunoradiometric Assay, and <i>in Vitro</i> Sertoli Cell Bioassay*. Journal of Clinical Endocrinology and Metabolism, 1991, 73, 818-823.	1.8	48
275	Maturation of Hypothalamic-Pituitary-Gonadal Function in Normal Human Fetuses: Circulating Levels of Gonadotropins, Their Common a-Subunit and Free Testosterone, and Discrepancy between Immunological and Biological Activities of Circulating Follicle-Stimulating Hormone*. Journal of Clinical Endocrinology and Metabolism. 1991, 73, 525-532.	1.8	133
276	Bioactivity of Gonadotropins. Endocrinology and Metabolism Clinics of North America, 1991, 20, 85-120.	1.2	38
277	Specific regulatory actions of dihydrotestosterone and estradiol on the dynamics of FSH secretion and clearance in humans. Journal of Andrology, 1991, 12, 27-35.	2.0	21
278	Bioactivity of gonadotropins. Endocrinology and Metabolism Clinics of North America, 1991, 20, 85-120.	1.2	2
279	Differential Regulation of Serum Immunoreactive Luteinizing Hormone and Bioactive Follicle-Stimulating Hormone by Testosterone in Early Pubertal Boys*. Journal of Clinical Endocrinology and Metabolism, 1990, 70, 1082-1089.	1.8	23
280	Serum Bioactive Follicle-Stimulating Hormone Concentrations from Prepuberty to Adulthood: A Cross-Sectional Study [*] . Journal of Clinical Endocrinology and Metabolism, 1990, 71, 1022-1027.	1.8	26
281	Bioactive Follicle-Stimulating Hormone Release in Nutritionally Growth-Retarded Ovariectomized Lambs: Regulation by Nutritional Repletion*. Endocrinology, 1989, 125, 2517-2526.	1.4	17
282	Serum Bioactive Follicle-Stimulating Hormone-Like Activity Increases during Pregnancy*. Journal of Clinical Endocrinology and Metabolism, 1989, 69, 968-977.	1.8	22
283	Metabolic Interfaces between Growth and Reproduction. II. Characterization of Changes in Messenger Ribonucleic Acid Concentrations of Gonadotropin Subunits, Growth Hormone, and Prolactin in Nutritionally Growth-Limited Lambs and the Differential Effects of Increased Nutrition*. Endocrinology, 1989, 125, 351-356.	1.4	42
284	Testosterone Infusion Reduces Nocturnal Luteinizing Hormone Pulse Frequency in Pubertal Boys*. Journal of Clinical Endocrinology and Metabolism, 1989, 69, 1213-1220.	1.8	19
285	Toward an Understanding of Interfaces Between Nutrition and Reproduction: The Growth-Restricted Lamb as a Model. , 1989, , 50-65.		10
286	Bioactive Follicle-Stimulating Hormone Responses to Intravenous Gonadotropin-Releasing Hormone in Boys With Idiopathic Hypogonadotropic Hypogonadism*. Journal of Clinical Endocrinology and Metabolism, 1988, 67, 793-800.	1.8	27
287	Modulation of Serum Follicle-Stimulating Hormone Bioactivity and Isoform Distribution by Estrogenic Steroids in Normal Women and in Gonadal Dysgenesis*. Journal of Clinical Endocrinology and Metabolism, 1988, 67, 465-473.	1.8	142
288	Modulation of growth hormone-releasing factor-induced release of growth hormone from bovine pituitary cells. Domestic Animal Endocrinology, 1987, 4, 243-252.	0.8	15

#	Article	IF	CITATIONS
289	An Improved in Vitro Bioassay for Follicle-Stimulating Hormone (FSH): Suitable for Measurement of FSH in Unextracted Human Serum*. Endocrinology, 1987, 121, 1089-1098.	1.4	98
290	Ovarian Function in Girls with McCune-Albright Syndrome. Pediatric Research, 1986, 20, 859-863.	1.1	52
291	Relationship between pituitary responsiveness to Gn-RH and number of Gn-RH-binding sites in pituitary glands of beef cows. Reproduction, 1984, 71, 267-277.	1.1	7
292	Changes in Inhibin-Like Bioactivity in Ovulatory and Atretic Follicles and Utero-Ovarian Venous Blood after Prostaglandin-Induced Luteolysis in Heifers*. Endocrinology, 1984, 115, 1332-1340.	1.4	24
293	Cortisol Inhibits and Adrenocorticotropin Has No Effect on Luteinizing Hormone-Releasing Hormone-Induced Release of Luteinizing Hormone from Bovine Pituitary Cells in Vitro*. Endocrinology, 1983, 112, 1782-1787.	1.4	113
294	Ovarian Steroids Modulate the Self-Priming Effect of Luteinizing Hormone-Releasing Hormone on Bovine Pituitary Cells in Vitro*. Endocrinology, 1982, 110, 717-721.	1.4	39
295	d-Valine medium maintains prolactin production in primary culture. Molecular and Cellular Endocrinology, 1982, 28, 613-626.	1.6	3
296	Estradiol Induces and Progesterone Inhibits The Preovulatory Surges of Luteinizing Hormone and Follicle-Stimulating Hormone in Heifers1. Biology of Reproduction, 1982, 26, 571-578.	1.2	34
297	Effects of Triiodothyronine and Thyroxine on Thyrotropin and Prolactin Secretion from Bovine Pituitary Cellsin Vitro*. Endocrinology, 1981, 108, 226-231.	1.4	19
298	A Priming Effect of Luteinizing Hormone Releasing Hormone on Bovine Pituitary Cells In Vitro. Journal of Animal Science, 1981, 52, 1137-1142.	0.2	13
299	Progesterone Inhibits the Ability of Estradiol to Increase Basal and Luteinizing Hormone-Releasing Hormone- Induced Luteinizing Hormone Release from Bovine Pituitary Cells in Culture: Neither Progesterone nor Estradiol Affects Follicle-Stimulating Hormone Release*. Endocrinology, 1981, 109, 1091-1096.	1.4	18
300	LUTEINIZING HORMONE RELEASING HORMONE-INDUCED RELEASE OF LUTEINIZING HORMONE FROM PITUITARY EXPLANTS OF COWS KILLED BEFORE OR AFTER OESTRADIOL TREATMENT. Journal of Endocrinology, 1981, 88, 17-25.	1.2	14
301	Estradiol-17β stimulates basal and thyrotropin releasing hormone induced prolactin secretion by bovine pituitary cells in primary culture. Molecular and Cellular Endocrinology, 1979, 14, 103-112.	1.6	16
302	Effects of Estradiol on Basal and Luteinizing Hormone Releasing Hormone (LHRH)-Induced Release of Luteinizing Hormone (LH) from Bovine Pituitary Cells in Culture1. Biology of Reproduction, 1978, 18, 608-613.	1.2	57
303	Localization of Gonadotropin Releasing Hormone (GnRH) Within the Bovine Hypothalamus11. Biology of Reproduction, 1977, 17, 706-711.	1.2	19
304	Estradiol Requirements for Induction and Maintenance of the Gonadotropin-Releasing Hormone Surge: Implications for Neuroendocrine Processing of the Estradiol Signal. , 0, .		24
305	Follicle-Stimulating Isohormones: Characterization and Physiological Relevance. , 0, .		16
306	Follicle-stimulating isohormones: regulation and biological significance. Bioscientifica Proceedings, 0, , .	1.0	0