
Johannes Bohacek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6435476/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiomic profiling of the acute stress response in the mouse hippocampus. Nature Communications, 2022, 13, 1824.	12.8	32
2	Deep-learning-based identification, tracking, pose estimation and behaviour classification of interacting primates and mice in complex environments. Nature Machine Intelligence, 2022, 4, 331-340.	16.0	31
3	Big behavior: challenges and opportunities in a new era of deep behavior profiling. Neuropsychopharmacology, 2021, 46, 33-44.	5.4	80
4	The Acute Stress Response in the Multiomic Era. Biological Psychiatry, 2021, 89, 1116-1126.	1.3	29
5	Single paternal dexamethasone challenge programs offspring metabolism and reveals multiple candidates in RNA-mediated inheritance. IScience, 2021, 24, 102870.	4.1	20
6	Pervasive compartmentâ€specific regulation of gene expression during homeostatic synaptic scaling. EMBO Reports, 2021, 22, e52094.	4.5	13
7	Chronic adolescent stress increases exploratory behavior but does not appear to change the acute stress response in adult male C57BL/6 mice. Neurobiology of Stress, 2021, 15, 100388.	4.0	3
8	Optogenetic activation of striatal D1R and D2R cells differentially engages downstream connected areas beyond the basal ganglia. Cell Reports, 2021, 37, 110161.	6.4	15
9	Sperm RNA: Quo vadis?. Seminars in Cell and Developmental Biology, 2020, 97, 123-130.	5.0	25
10	Apold1 deficiency associates with increased arterial thrombosis in vivo. European Journal of Clinical Investigation, 2020, 50, e13191.	3.4	8
11	Deep learning-based behavioral analysis reaches human accuracy and is capable of outperforming commercial solutions. Neuropsychopharmacology, 2020, 45, 1942-1952.	5.4	107
12	The locus coeruleus on stress: Bridging the translational gap. Alzheimer's and Dementia, 2020, 16, e038073.	0.8	0
13	A complete pupillometry toolbox for real-time monitoring of locus coeruleus activity in rodents. Nature Protocols, 2020, 15, 2301-2320.	12.0	46
14	Rapid Reconfiguration of the Functional Connectome after Chemogenetic Locus Coeruleus Activation. Neuron, 2019, 103, 702-718.e5.	8.1	198
15	Exploratory rearing: a context- and stress-sensitive behavior recorded in the open-field test. Stress, 2018, 21, 443-452.	1.8	280
16	Distinct Proteomic, Transcriptomic, and Epigenetic Stress Responses in Dorsal and Ventral Hippocampus. Biological Psychiatry, 2018, 84, 531-541.	1.3	106
17	Interplay between TETs and microRNAs in the adult brain for memory formation. Scientific Reports, 2018, 8, 1678.	3.3	27
18	Paternal experience impacts cognitive function in offspring: a pre-existing concept. Molecular Psychiatry, 2018, 23, 794-795.	7.9	3

JOHANNES BOHACEK

#	Article	IF	CITATIONS
19	Epigenetic germline inheritance in mammals: looking to the past to understand the future. Genes, Brain and Behavior, 2018, 17, e12407.	2.2	48
20	Transgenerational epigenetic inheritance: from biology to society—Summary Latsis Symposium Aug 28–30, 2017, Zürich, Switzerland. Environmental Epigenetics, 2018, 4, dvy012.	1.8	4
21	Transgenerational transmission and modification of pathological traits induced by prenatal immune activation. Molecular Psychiatry, 2017, 22, 102-112.	7.9	131
22	A guide to designing germline-dependent epigenetic inheritance experiments in mammals. Nature Methods, 2017, 14, 243-249.	19.0	69
23	Dissecting stress with transcriptomics. Oncotarget, 2017, 8, 10783-10784.	1.8	1
24	Epigenetic Risk Factors for Diseases: A Transgenerational Perspective. Epigenetics and Human Health, 2016, , 79-119.	0.2	3
25	Rapid stress-induced transcriptomic changes in the brain depend on beta-adrenergic signaling. Neuropharmacology, 2016, 107, 329-338.	4.1	37
26	Stress does not increase blood–brain barrier permeability in mice. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1304-1315.	4.3	35
27	Potential of Environmental Enrichment to Prevent Transgenerational Effects of Paternal Trauma. Neuropsychopharmacology, 2016, 41, 2749-2758.	5.4	135
28	Probing the germline-dependence of epigenetic inheritance using artificial insemination in mice. Environmental Epigenetics, 2016, 2, dvv015.	1.8	13
29	Molecular insights into transgenerational non-genetic inheritance of acquired behaviours. Nature Reviews Genetics, 2015, 16, 641-652.	16.3	256
30	Hippocampal gene expression induced by cold swim stress depends on sex and handling. Psychoneuroendocrinology, 2015, 52, 1-12.	2.7	51
31	Pathological brain plasticity and cognition in the offspring of males subjected to postnatal traumatic stress. Molecular Psychiatry, 2015, 20, 621-631.	7.9	96
32	Distinct molecular components for thalamic- and cortical-dependent plasticity in the lateral amygdala. Frontiers in Molecular Neuroscience, 2014, 7, 62.	2.9	11
33	Epigenetics of Memory and Plasticity. Progress in Molecular Biology and Translational Science, 2014, 122, 305-340.	1.7	53
34	Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nature Neuroscience, 2014, 17, 667-669.	14.8	1,067
35	Epigenetic regulation in neurodevelopment and neurodegenerative diseases. Neuroscience, 2014, 264, 99-111.	2.3	80
36	Early life stress in fathers improves behavioural flexibility in their offspring. Nature Communications, 2014, 5, 5466.	12.8	140

JOHANNES BOHACEK

#	Article	IF	CITATIONS
37	Epigenetic Inheritance of Disease and Disease Risk. Neuropsychopharmacology, 2013, 38, 220-236.	5.4	140
38	Transgenerational Epigenetic Effects on Brain Functions. Biological Psychiatry, 2013, 73, 313-320.	1.3	118
39	Epigenetic Inheritance in Mammals. Research and Perspectives in Neurosciences, 2012, , 55-62.	0.4	0
40	The beneficial effects of estradiol on attentional processes are dependent on timing of treatment initiation following ovariectomy in middle-aged rats. Psychoneuroendocrinology, 2010, 35, 694-705.	2.7	58
41	Transient Estradiol Exposure during Middle Age in Ovariectomized Rats Exerts Lasting Effects on Cognitive Function and the Hippocampus. Endocrinology, 2010, 151, 1194-1203.	2.8	90
42	The critical period hypothesis of estrogen effects on cognition: Insights from basic research. Biochimica Et Biophysica Acta - General Subjects, 2010, 1800, 1068-1076.	2.4	84
43	Transient Estradiol Exposure during Middle Age in Ovariectomized Rats Exerts Lasting Effects on Cognitive Function and the Hippocampus. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 979-979.	3.6	Ο
44	The Ability of Oestradiol Administration to Regulate Protein Levels of Oestrogen Receptor Alpha in the Hippocampus and Prefrontal Cortex of Middleâ€Aged Rats is Altered Following Longâ€Term Ovarian Hormone Deprivation. Journal of Neuroendocrinology, 2009, 21, 640-647.	2.6	70
45	Longâ€Term Ovarian Hormone Deprivation Alters the Ability of Subsequent Oestradiol Replacement to Regulate Choline Acetyltransferase Protein Levels in the Hippocampus and Prefrontal Cortex of Middleâ€Aged Rats. Journal of Neuroendocrinology, 2008, 20, 1023-1027.	2.6	69
46	Increased daily handling of ovariectomized rats enhances performance on a radial-maze task and obscures effects of estradiol replacement. Hormones and Behavior, 2007, 52, 237-243.	2.1	58
47	Optogenetic Activation of Striatal D1/D2 Medium Spiny Neurons Differentially Engages Downstream Connected Areas Beyond the Basal Ganglia. SSRN Electronic Journal, 0, , .	0.4	0
48	Rapid Reconfiguration of the Functional Connectome after Chemogenetic Locus Coeruleus Activation. SSRN Electronic Journal, 0, , .	0.4	1