Muthupandian Ashokkumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6435245/publications.pdf

Version: 2024-02-01

489 papers 26,473 citations

84 h-index 135 g-index

505 all docs 505 docs citations

505 times ranked 20484 citing authors

#	Article	IF	CITATIONS
1	<i>In silico</i> approach for enhancing innate lipid content of <i>Yarrowia lipolytica,</i> by blocking the acyl-CoA oxidase-1 enzyme, using various analogous compounds of lipids. Journal of Biomolecular Structure and Dynamics, 2023, 41, 511-524.	2.0	2
2	Enrichment of hydrogen production from fruit waste biomass using ozonation assisted with citric acid. Waste Management and Research, 2022, 40, 556-564.	2,2	5
3	Revealing the stability of CuWO4/g-C3N4 nanocomposite for photocatalytic tetracycline degradation from the aqueous environment and DFT analysis. Environmental Research, 2022, 207, 112112.	3.7	28
4	Non-thermal Treatment of Milk: Ultrasonics and Megasonics. , 2022, , 724-732.		0
5	Sonoprocessing: From Concepts to Large-Scale Reactors. Chemical Reviews, 2022, 122, 3219-3258.	23.0	61
6	An alternative technique for determining the number density of acoustic cavitation bubbles in sonochemical reactors. Ultrasonics Sonochemistry, 2022, 82, 105872.	3.8	18
7	Transforming the Chemical Structure and Bioâ€Nano Activity of Doxorubicin by Ultrasound for Selective Killing of Cancer Cells. Advanced Materials, 2022, 34, e2107964.	11.1	12
8	Graphitic carbon nitride for photocatalytic hydrogen production. , 2022, , 17-68.		2
9	Ultrasound-Assisted Extracellular Polymeric Substance Removal from the Diatom <i>Navicula</i> sp.: A Route to Functional Polysaccharides and More Efficient Algal Biorefineries. ACS Sustainable Chemistry and Engineering, 2022, 10, 1795-1804.	3.2	2
10	Ultrasound-aided synthesis of gold-loaded boron-doped graphene quantum dots interface towards simultaneous electrochemical determination of guanine and adenine biomolecules. Ultrasonics Sonochemistry, 2022, 83, 105921.	3.8	9
11	A review on contemporary approaches in enhancing the innate lipid content of yeast cell. Chemosphere, 2022, 293, 133616.	4.2	14
12	A correlation between cavitation bubble temperature, sonoluminescence and interfacial chemistry – A minireview. Ultrasonics Sonochemistry, 2022, 85, 105988.	3.8	20
13	Investigating the role of ultrasound in improving the photocatalytic ability of CQD decorated boron-doped g-C3N4 for tetracycline degradation and first-principles study of nitrogen-vacancy formation. Carbon, 2022, 192, 405-417.	5.4	68
14	Synergistic impacts of sonolysis aided photocatalytic degradation of water pollutant over perovskite-type CeNiO ₃ nanospheres. New Journal of Chemistry, 2022, 46, 10117-10127.	1.4	13
15	Sonosynthesis of nanobiotics with antimicrobial and antioxidant properties. Ultrasonics Sonochemistry, 2022, 86, 106029.	3.8	4
16	Lysozyme microspheres incorporated with anisotropic gold nanorods for ultrasound activated drug delivery. Ultrasonics Sonochemistry, 2022, 86, 106016.	3.8	11
17	Ultrasound-induced protein restructuring and ordered aggregation to form amyloid crystals. European Biophysics Journal, 2022, 51, 335-352.	1.2	6
18	Turbulence-dependent reversible liquid-gel transition of micellar casein-stabilised emulsions. Food Hydrocolloids, 2022, 131, 107819.	5.6	5

#	Article	IF	CITATIONS
19	Confined microemulsion sono-polymerization of poly(ethylene glycol) nanoparticles for targeted delivery. Chemical Communications, 2022, 58, 7777-7780.	2.2	7
20	Metal Ion Augmented Mussel Inspired Polydopamine Immobilized 3D Printed Osteoconductive Scaffolds for Accelerated Bone Tissue Regeneration. ACS Applied Materials & Samp; Interfaces, 2022, 14, 28455-28475.	4.0	10
21	Ultrasonic Processing of Food Waste to Generate Value-Added Products. Foods, 2022, 11, 2035.	1.9	13
22	Halloysite nanotubes-based supercapacitor: preparation using sonochemical approach and its electrochemical performance. Energy, Ecology and Environment, 2021, 6, 13-25.	1.9	9
23	Sonochemical synthesis of aluminium and aluminium hybrids for remediation of toxic metals. Ultrasonics Sonochemistry, 2021, 70, 105299.	3.8	6
24	Fe(III) $\hat{a} \in \varepsilon$ atalyzed degradation of persistent textile dyes by chlorine at slightly acidic conditions: the crucial role of Cl 2 $\hat{a} - \hat{e}$ radical in the degradation process and impacts of mineral and organic competitors. Asia-Pacific Journal of Chemical Engineering, 2021, 16, .	0.8	9
25	Upper rim modified calix[4]arene towards selective turn-on fluorescence sensor for spectroscopically silent metal ions. Inorganica Chimica Acta, 2021, 516, 120133.	1.2	8
26	Evaluation of biohydrogen production potential of fragmented sugar industry biosludge using ultrasonication coupled with egtazic acid. International Journal of Hydrogen Energy, 2021, 46, 1705-1714.	3.8	12
27	Mercury removal from aqueous solution using petal-like MoS2 nanosheets. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	3.3	27
28	Ultrasound – The Physical and Chemical Effects Integral to Food Processing. , 2021, , 329-358.		11
29	Platinum-free dye-sensitized solar cells by flower-like mixed-phase Co _x S _y /Ni _x S _y /Mo _x S _y /New Journal of Chemistry, 2021, 45, 1967-1976.	1.4	12
30	Sound methods for the synthesis of nanoparticles from biological molecules. Nanoscale Advances, 2021, 3, 4907-4917.	2.2	8
31	Sonochemical dosimetry: A comparative study of Weissler, Fricke and terephthalic acid methods. Ultrasonics Sonochemistry, 2021, 72, 105413.	3.8	24
32	Laser-assisted decoration of carbon nanotubes with palladium nanoparticles for application in electrochemical methanol oxidation. Bulletin of Materials Science, 2021, 44, 1.	0.8	4
33	Impact of bubble coalescence in the determination of bubble sizes using a pulsed US technique: Part 1 – Argon bubbles in water. Ultrasonics Sonochemistry, 2021, 73, 105532.	3.8	5
34	Acoustic cavitation at low gas pressures in PZT-based ultrasonic systems. Ultrasonics Sonochemistry, 2021, 73, 105493.	3.8	9
35	Integrated technique of pulsed laser irradiation and sonochemical processes for the production of highly surface-active NiPd spheres. Chemical Engineering Journal, 2021, 411, 128486.	6.6	119
36	Antibacterial mechanism of ultrasound against Escherichia coli: Alterations in membrane microstructures and properties. Ultrasonics Sonochemistry, 2021, 73, 105509.	3.8	61

#	Article	IF	CITATIONS
37	Recent advances in the application of ultrasound in dairy products: Effect on functional, physical, chemical, microbiological and sensory properties. Ultrasonics Sonochemistry, 2021, 73, 105467.	3.8	93
38	Impact of bubble coalescence in the determination of bubble sizes using a pulsed US technique: Part 2 $\hat{a} \in \mathcal{C}$ Effect of the nature of saturating gas. Ultrasonics Sonochemistry, 2021, 73, 105537.	3.8	1
39	Interplay between interfacial behaviour, cell structure and shear enables biphasic lipid extraction from whole diatom cells (Navicula sp.). Journal of Colloid and Interface Science, 2021, 589, 65-76.	5.0	8
40	Ultrasound expands the versatility of polydopamine coatings. Ultrasonics Sonochemistry, 2021, 74, 105571.	3.8	12
41	Application of advanced materials in sonophotocatalytic processes for the remediation of environmental pollutants. Journal of Hazardous Materials, 2021, 412, 125245.	6.5	215
42	Preparation of MgTi2O5 nanoparticles for sonophotocatalytic degradation of triphenylmethane dyes. Ultrasonics Sonochemistry, 2021, 75, 105585.	3.8	33
43	Multilayer co-encapsulation of probiotics and \hat{I}^3 -amino butyric acid (GABA) using ultrasound for functional food applications. LWT - Food Science and Technology, 2021, 146, 111432.	2.5	23
44	Ultrasonic microencapsulation of oil-soluble vitamins by hen egg white and green tea for fortification of food. Food Chemistry, 2021, 353, 129432.	4.2	22
45	Sonoâ€Fenton Chemistry Converts Phenol and Phenyl Derivatives into Polyphenols for Engineering Surface Coatings. Angewandte Chemie, 2021, 133, 21699-21705.	1.6	5
46	Ultrasound-Assisted Microencapsulation of Soybean Oil and Vitamin D Using Bare Glycogen Nanoparticles. Molecules, 2021, 26, 5157.	1.7	5
47	Sonoâ€Fenton Chemistry Converts Phenol and Phenyl Derivatives into Polyphenols for Engineering Surface Coatings. Angewandte Chemie - International Edition, 2021, 60, 21529-21535.	7.2	18
48	Editorial to surface tailored innovative materials and technologies for wastewater treatment. Environmental Pollution, 2021, 284, 117436.	3.7	1
49	Mechanism of low-frequency and high-frequency ultrasound-induced inactivation of soy trypsin inhibitors. Food Chemistry, 2021, 360, 130057.	4.2	21
50	Insight into the structural, chemical and surface properties of proteins for the efficient ultrasound assisted co-encapsulation and delivery of micronutrients. Food Chemistry, 2021, 362, 130236.	4.2	8
51	Recent developments on bismuth oxyhalides (BiOX; $X = Cl$, Br, I) based ternary nanocomposite photocatalysts for environmental applications. Chemosphere, 2021, 282, 131054.	4.2	87
52	Process Intensification Approach Using Microreactors for Synthesizing Nanomaterialsâ€"A Critical Review. Nanomaterials, 2021, 11, 98.	1.9	55
53	Innovative Technologies for Extraction and Microencapsulation of Bioactives from Plant-Based Food Waste and Their Applications in Functional Food Development. Foods, 2021, 10, 279.	1.9	64
54	Synthesis of Gold Nanosheets with Controlled Morphology by Combining a Natural Amino Acid with High-Frequency Ultrasound. ACS Sustainable Chemistry and Engineering, 2021, 9, 13953-13962.	3.2	10

#	Article	IF	CITATIONS
55	Acoustic cavitation-induced shear: a mini-review. Biophysical Reviews, 2021, 13, 1229-1243.	1.5	5
56	Turbulence-induced formation of emulsion gels. Ultrasonics Sonochemistry, 2021, 81, 105847.	3.8	3
57	Formation by high power ultrasound of aggregated emulsions stabilised with milk protein concentrate (MPC70). Ultrasonics Sonochemistry, 2021, 81, 105852.	3.8	7
58	Molecular regulatory mechanisms of Escherichia coli O157:H7 in response to ultrasonic stress revealed by proteomic analysis. Ultrasonics Sonochemistry, 2020, 61, 104835.	3.8	17
59	Sound-driven dissipative self-assembly of aromatic biomolecules into functional nanoparticles. Nanoscale Horizons, 2020, 5, 553-563.	4.1	33
60	Effect of ultrasound on binding interaction between emodin and micellar casein and its microencapsulation at various temperatures. Ultrasonics Sonochemistry, 2020, 62, 104861.	3.8	37
61	Size reduction of "reformed casein micelles―by high-power ultrasound and high hydrostatic pressure. Ultrasonics Sonochemistry, 2020, 63, 104929.	3.8	20
62	Disperser coupled rhamnolipid disintegration of pulp and paper mill waste biosolid: Characterisation, methane production, energy assessment and cost analysis. Bioresource Technology, 2020, 297, 122545.	4.8	10
63	Ultrasonic emulsification: An overview on the preparation of different emulsifiers-stabilized emulsions. Trends in Food Science and Technology, 2020, 105, 363-377.	7.8	189
64	Facile synthesis of SnO2 nanoparticle intercalated unzipped multi-walled carbon nanotubes via an ultrasound-assisted route for symmetric supercapacitor devices. Sustainable Energy and Fuels, 2020, 4, 5120-5131.	2.5	4
65	Sono-Assembly of the [Arg-Phe]4 Octapeptide into Biofunctional Nanoparticles. Nanomaterials, 2020, 10, 1772.	1.9	7
66	Solubilisation of micellar casein powders by high-power ultrasound. Ultrasonics Sonochemistry, 2020, 67, 105131.	3.8	25
67	Synthesis of random copolymer using Zig-Zag Naphthodithiophene for bulk Heterojunction polymer solar cell applications. Journal of Polymer Research, 2020, 27, 1.	1.2	2
68	A simple and ubiquitous device for picric acid detection in latent fingerprints using carbon dots. Analyst, The, 2020, 145, 4532-4539.	1.7	37
69	Free Radical Generation from High-Frequency Electromechanical Dissociation of Pure Water. Journal of Physical Chemistry Letters, 2020, 11, 4655-4661.	2.1	23
70	rGO supported self-assembly of 2D nano sheet of (g-C3N4) into rod-like nano structure and its application in sonophotocatalytic degradation of an antibiotic. Ultrasonics Sonochemistry, 2020, 68, 105218.	3.8	36
71	Ultrasound-assisted production of biodiesel using engineered methanol tolerant Proteus vulgaris lipase immobilized on functionalized polysulfone beads. Ultrasonics Sonochemistry, 2020, 68, 105211.	3.8	19
72	Incorporating whey protein aggregates produced with heat and ultrasound treatment into rennet gels and model non-fat cheese systems. Food Hydrocolloids, 2020, 109, 106103.	5 . 6	21

#	Article	IF	Citations
73	Pseudocapacitive performance of Mn3O4–SnO2 hybrid nanoparticles synthesized via ultrasonication approach. Journal of Applied Electrochemistry, 2020, 50, 609-619.	1.5	13
74	Formation of cheddar cheese analogues using canola oil and ultrasonication – A comparison between single and double emulsion systems. International Dairy Journal, 2020, 105, 104683.	1.5	10
7 5	Influence of frequency sweep on sonochemiluminescence and sonoluminescence. Ultrasonics Sonochemistry, 2020, 64, 105047.	3.8	6
76	Sonoelectrochemistry for energy and environmental applications. Ultrasonics Sonochemistry, 2020, 63, 104960.	3.8	154
77	Synthesis of bio-functional nanoparticles from sono-responsive amino acids using high frequency ultrasound. Ultrasonics Sonochemistry, 2020, 63, 104967.	3.8	15
78	Effect of Bulk Viscosity and Emulsion Droplet Size on the Separation Efficiency of Model Mineral Oil-in-Water (O/W) Emulsions under Ultrasonic Standing Wave Fields: A Theoretical and Experimental Investigation. Industrial & Discourse Engineering Chemistry Research, 2020, 59, 7901-7912.	1.8	13
79	Synthesis of 3D marigold flower-like rGO/BN/Ni(OH) < sub>2 < /sub>ternary nanocomposites for supercapacitor applications. Sustainable Energy and Fuels, 2020, 4, 3090-3101.	2.5	14
80	Amino Acid and Secondary Structure Integrity of Sonicated Milk Proteins. Australian Journal of Chemistry, 2020, 73, 170.	0.5	14
81	Effect of sonication, microwaves and high-pressure processing on ACE-inhibitory activity and antioxidant potential of Cheddar cheese during ripening. Ultrasonics Sonochemistry, 2020, 67, 105140.	3.8	46
82	A review on hybrid techniques for the degradation of organic pollutants in aqueous environment. Ultrasonics Sonochemistry, 2020, 67, 105130.	3.8	131
83	Food Waste and Manure. , 2020, , 899-938.		2
84	Effects of high pressure, microwave and ultrasound processing on proteins and enzyme activity in dairy systems — A review. Innovative Food Science and Emerging Technologies, 2019, 57, 102192.	2.7	100
85	Continuous flow synthesis of nanostructured bimetallic Pt-Mo/C catalysts in milli-channel reactor for PEM fuel cell application. Materials Chemistry and Physics, 2019, 237, 121854.	2.0	18
86	Effect of NaCl salt on sonochemistry and sonoluminescence in aqueous solutions. Ultrasonics Sonochemistry, 2019, 59, 104753.	3.8	28
87	Sono-Polymerization of Poly(ethylene glycol)-Based Nanoparticles for Targeted Drug Delivery. ACS Macro Letters, 2019, 8, 1285-1290.	2.3	22
88	Influence of mineral water constituents, organic matter and water matrices on the performance of the H ₂ O _{10₄^{â^3}-advanced oxidation process. Environmental Science: Water Research and Technology, 2019, 5, 1985-1992.}	1.2	23
89	Hybrid Advanced Oxidation Processes Involving Ultrasound: An Overview. Molecules, 2019, 24, 3341.	1.7	73
90	Membrane Separations in the Dairy Industry. , 2019, , 267-304.		14

#	Article	IF	CITATIONS
91	Ultrasound and Sonochemistry for Radical Polymerization: Sound Synthesis. Chemistry - A European Journal, 2019, 25, 5372-5388.	1.7	138
92	Influence of ultrasound frequency and power on lactose nucleation. Journal of Food Engineering, 2019, 249, 34-39.	2.7	19
93	Cavitational activity in heterogeneous systems containing fine particles. Ultrasonics Sonochemistry, 2019, 58, 104599.	3.8	14
94	Rapid catalytic degradation of refractory textile dyes in Fe(II)/chlorine system at near neutral pH: Radical mechanism involving chlorine radical anion (Cl2â^)-mediated transformation pathways and impact of environmental matrices. Separation and Purification Technology, 2019, 227, 115685.	3.9	48
95	High-intensity ultrasound: A novel technology for the development of probiotic and prebiotic dairy products. Ultrasonics Sonochemistry, 2019, 57, 12-21.	3.8	110
96	A luminescent on–off probe based calix[4]arene linked through triazole with ruthenium(<scp>ii</scp>) polypyridine complexes to sense copper(<scp>ii</scp>) and sulfide ions. New Journal of Chemistry, 2019, 43, 9832-9842.	1.4	27
97	Rheological properties of concentrated slurries of harvested, incubated and ruptured Nannochloropsis sp. cells. BMC Chemical Engineering, 2019, 1, .	3.4	6
98	Exploring New Applications of Lysozyme-Shelled Microbubbles. Langmuir, 2019, 35, 9997-10006.	1.6	15
99	Frontispiece: Ultrasound and Sonochemistry for Radical Polymerization: Sound Synthesis. Chemistry - A European Journal, 2019, 25, .	1.7	0
100	H ₂ O ₂ /periodate (IO ₄ ^{â^'}): a novel advanced oxidation technology for the degradation of refractory organic pollutants. Environmental Science: Water Research and Technology, 2019, 5, 1113-1123.	1,2	43
101	Editorial. Ultrasonics Sonochemistry, 2019, 52, 1.	3.8	1
102	Sonochemically Initiated RAFT Polymerization in Organic Solvents. Macromolecules, 2019, 52, 185-195.	2.2	38
103	Ultrasonic pretreatment of food waste to accelerate enzymatic hydrolysis for glucose production. Ultrasonics Sonochemistry, 2019, 53, 77-82.	3.8	46
104	Ultrasound assisted synthesis of reduced graphene oxide (rGO) supported InVO4-TiO2 nanocomposite for efficient hydrogen production. Ultrasonics Sonochemistry, 2019, 53, 1-10.	3.8	50
105	Fuel waste to fluorescent carbon dots and its multifarious applications. Sensors and Actuators B: Chemical, 2019, 282, 972-983.	4.0	28
106	Synergistic effect of sono-photocatalytic process for the degradation of organic pollutants using CuO-TiO2/rGO. Ultrasonics Sonochemistry, 2019, 50, 218-223.	3.8	147
107	Fundamental and Applied Aspects of Ultrasonics and Sonochemistry. Springer Briefs in Molecular Science, 2019, , 1-19.	0.1	6
108	Electrochemical Performance of Starch-Polyaniline Nanocomposites Synthesized By Sonochemical Process Intensification. Journal of Renewable Materials, 2019, 7, 1279-1293.	1.1	8

#	Article	IF	Citations
109	Recent development on carbon based heterostructures for their applications in energy and environment: A review. Journal of Industrial and Engineering Chemistry, 2018, 64, 16-59.	2.9	146
110	Ultrasonic Production of Nano-emulsions for Bioactive Delivery in Drug and Food Applications. Springer Briefs in Molecular Science, 2018, , .	0.1	13
111	High frequency sonoATRP of 2-hydroxyethyl acrylate in an aqueous medium. Polymer Chemistry, 2018, 9, 2562-2568.	1.9	38
112	Screening of Isochrysis Strains and Utilization of a Two-Stage Outdoor Cultivation Strategy for Algal Biomass and Lipid Production. Applied Biochemistry and Biotechnology, 2018, 185, 1100-1117.	1.4	14
113	A review on BiVO 4 photocatalyst: Activity enhancement methods for solar photocatalytic applications. Applied Catalysis A: General, 2018, 555, 47-74.	2.2	512
114	Sono-transformation of tannic acid into biofunctional ellagic acid micro/nanocrystals with distinct morphologies. Green Chemistry, 2018, 20, 816-821.	4.6	39
115	Ultrasound-assisted synthesis of Pt–Co/C bimetallic alloys for oxygen reduction in PEM fuel cells. Sustainable Energy and Fuels, 2018, 2, 1491-1499.	2.5	24
116	Inverse effects of the gas feed positioning on sonochemistry and sonoluminescence. Ultrasonics Sonochemistry, 2018, 46, 10-17.	3.8	13
117	Ultrasonically synthesized organic liquid-filled chitosan microcapsules: part 2: characterization using AFM (atomic force microscopy) and combined AFM–confocal laser scanning fluorescence microscopy. Soft Matter, 2018, 14, 3192-3201.	1.2	12
118	Ultrasonically synthesized organic liquid-filled chitosan microcapsules: part 1: tuning physical & mp; functional properties. Soft Matter, 2018, 14, 3202-3208.	1.2	4
119	Photocatalytic properties of hierarchical CuO nanosheets synthesized by a solution phase method. Journal of Environmental Sciences, 2018, 69, 115-124.	3.2	40
120	Synthesis of iron oxide nanoparticles in a continuous flow spiral microreactor and Corning $\hat{A}^{@}$ advanced flow \hat{a} , \hat{b} reactor. Green Processing and Synthesis, 2018, 7, 1-11.	1.3	30
121	The formation of double emulsions in skim milk using minimal food-grade emulsifiers – A comparison between ultrasonic and high pressure homogenisation efficiencies. Journal of Food Engineering, 2018, 219, 81-92.	2.7	50
122	The inhibitory roles of native whey protein on the rennet gelation of bovine milk. Food Chemistry, 2018, 244, 36-43.	4.2	29
123	Structural and optical properties of Mg doped ZnS quantum dots and biological applications. Superlattices and Microstructures, 2018, 113, 236-243.	1.4	36
124	A study of the effectiveness and energy efficiency of ultrasonic emulsification. Physical Chemistry Chemical Physics, 2018, 20, 86-96.	1.3	62
125	Sonocrystallization of Lactose from Whey. , 2018, , .		5
126	Introduction to Ultrasound and Sonochemistry. Electrochemical Society Interface, 2018, 27, 43-46.	0.3	16

#	Article	IF	CITATIONS
127	Ultrasoundâ€Assisted Synthesis of Crossâ€Linked Poly(ethylene glycol) Nanostructures with Hydrophobic Core and Hydrophilic Shell. Macromolecular Chemistry and Physics, 2018, 219, 1800353.	1.1	9
128	Sono-RAFT Polymerization-Induced Self-Assembly in Aqueous Dispersion: Synthesis of LCST-type Thermosensitive Nanogels. Macromolecules, 2018, 51, 8862-8869.	2.2	53
129	The effect of high-intensity ultrasound on cell disruption and lipid extraction from high-solids viscous slurries of Nannochloropsis sp. biomass. Algal Research, 2018, 35, 341-348.	2.4	41
130	A Simple Discriminating pâ€tertâ€Butylcalix[4]arene Thiospirolactam Rhodamine B Based Colorimetric and Fluorescence Sensor for Mercury Ion and Live Cell Imaging Applications. ChemistrySelect, 2018, 3, 4413-4420.	0.7	6
131	Functionalised dairy streams: Tailoring protein functionality using sonication and heating. Ultrasonics Sonochemistry, 2018, 48, 499-508.	3.8	30
132	Emulsifying properties of ruptured microalgae cells: Barriers to lipid extraction or promising biosurfactants?. Colloids and Surfaces B: Biointerfaces, 2018, 170, 438-446.	2.5	28
133	Quantification of Cavitation Activity by Sonoluminescence To Study the Sonocrystallization Process under Different Ultrasound Parameters. Crystal Growth and Design, 2018, 18, 5108-5115.	1.4	21
134	Introductory text to sonochemistry. ChemTexts, 2018, 4, 1.	1.0	5
135	Phase-controlled synthesis of bismuth oxide polymorphs for photocatalytic applications. Materials Chemistry Frontiers, 2018, 2, 1664-1673.	3.2	62
136	Ultrasound-assisted fabrication of metal nano-porous shells across polymer beads and their catalytic activity for reduction of 4-nitrophenol. Ultrasonics Sonochemistry, 2018, 49, 63-68.	3.8	13
137	Introduction to Advanced Nanomaterials. , 2018, , 1-53.		17
138	Ultrasonic Food Processing. RSC Green Chemistry, 2018, , 316-354.	0.0	2
139	Ultrasonic enhancement of lipase-catalysed transesterification for biodiesel synthesis. Ultrasonics Sonochemistry, 2017, 34, 305-309.	3.8	69
140	Investigation on the pitting of potato starch granules during high frequency ultrasound treatment. Ultrasonics Sonochemistry, 2017, 35, 547-555.	3.8	35
141	Ultrasonic encapsulation – A review. Ultrasonics Sonochemistry, 2017, 35, 605-614.	3.8	116
142	TiO2–NiO p–n nanocomposite with enhanced sonophotocatalytic activity under diffused sunlight. Ultrasonics Sonochemistry, 2017, 35, 655-663.	3.8	78
143	Preface: Ultrasound in the processing of liquid foods, beverages and alcoholic drinks. Ultrasonics Sonochemistry, 2017, 38, 753.	3.8	17
144	Synthesis of Hierarchical Cobalt Phosphate Nanoflakes and Their Enhanced Electrochemical Performances for Supercapacitor Applications. ChemistrySelect, 2017, 2, 201-210.	0.7	100

#	Article	IF	Citations
145	Graphene oxide/Fe ₃ O ₄ /SO ₃ H nanohybrid: a new adsorbent for adsorption and reduction of Cr(<scp>vi</scp>) from aqueous solutions. RSC Advances, 2017, 7, 14876-14887.	1.7	65
146	Crumpled Cu 2 O-g-C 3 N 4 nanosheets for hydrogen evolution catalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 527, 34-41.	2.3	41
147	Recent advances in MoS 2 nanostructured materials for energy and environmental applications – A review. Journal of Solid State Chemistry, 2017, 252, 43-71.	1.4	216
148	Graphene Quantum Dots Anchored Gold Nanorods for Electrochemical Detection of Glutathione. ChemistrySelect, 2017, 2, 4744-4752.	0.7	11
149	A Simple One-Step Ultrasonic Route To Synthesize Antioxidant Molecules and Fluorescent Nanoparticles from Phenol and Phenol-Like Molecules. ACS Sustainable Chemistry and Engineering, 2017, 5, 6081-6089.	3.2	18
150	Theory of Sonochemistry. Topics in Current Chemistry Collections, 2017, , 1-28.	0.2	10
151	Chitosan microspheres as a template for TiO ₂ and ZnO microparticles: studies on mechanism, functionalization and applications in photocatalysis and H ₂ S removal. RSC Advances, 2017, 7, 19373-19383.	1.7	25
152	Ultrasound-assisted oxidative-adsorptive desulfurization using highly acidic graphene oxide as a catalyst-adsorbent. Fuel, 2017, 210, 639-645.	3.4	60
153	Preparation of Fe2O3 nanoparticles by acoustic and hydrodynamic cavitation techniques and corrosion inhibition release studies using its nanocontainers. Protection of Metals and Physical Chemistry of Surfaces, 2017, 53, 850-858.	0.3	2
154	Sonoâ€RAFT Polymerization in Aqueous Medium. Angewandte Chemie - International Edition, 2017, 56, 12302-12306.	7.2	139
155	A model for the effect of bulk liquid viscosity on cavitation bubble dynamics. Physical Chemistry Chemical Physics, 2017, 19, 20635-20640.	1.3	28
156	Biodiesel synthesis assisted by ultrasonication using engineered thermo-stable Proteus vulgaris lipase. Fuel, 2017, 208, 430-438.	3.4	17
157	Comparison of the photocatalytic efficiencies of continuous stirred tank reactor (CSTR) and batch systems using a dispersed micron sized photocatalyst. RSC Advances, 2017, 7, 48222-48229.	1.7	19
158	Preparation of water-in-oil-in-water emulsions by low frequency ultrasound using skim milk and sunflower oil. Food Hydrocolloids, 2017, 63, 685-695.	5.6	82
159	Ultrasound-assisted mineralization of organic contaminants using a recyclable LaFeO3 and Fe3+/persulfate Fenton-like system. Ultrasonics Sonochemistry, 2017, 34, 924-930.	3.8	39
160	Improved synthesis of aluminium nanoparticles using ultrasound assisted approach and subsequent dispersion studies in di-octyl adipate. Ultrasonics Sonochemistry, 2017, 36, 59-69.	3.8	24
161	Sonochemical and sustainable synthesis of graphene-gold (G-Au) nanocomposites for enzymeless and selective electrochemical detection of nitric oxide. Biosensors and Bioelectronics, 2017, 87, 622-629.	5.3	91
162	Sonoâ€RAFT Polymerization in Aqueous Medium. Angewandte Chemie, 2017, 129, 12470-12474.	1.6	23

#	Article	IF	Citations
163	The Role of Ultrasound on Advanced Oxidation Processes. Topics in Current Chemistry Collections, 2017, , 117-148.	0.2	8
164	Enhanced photocurrent generation in bacteriorhodopsin based bio-sensitized solar cells using gel electrolyte. Journal of Photochemistry and Photobiology B: Biology, 2016, 162, 208-212.	1.7	36
165	Removal of Heavy Metal from Wastewater. , 2016, , 813-839.		5
166	Sono-assembly of nanostructures via tyrosine–tyrosine coupling reactions at the interface of acoustic cavitation bubbles. Materials Horizons, 2016, 3, 563-567.	6.4	36
167	The Role of Ultrasound on Advanced Oxidation Processes. Topics in Current Chemistry, 2016, 374, 75.	3.0	47
168	Ultrasonic synthesis of stable oil filled microcapsules using thiolated chitosan and their characterization by AFM and numerical simulations. Soft Matter, 2016, 12, 7212-7222.	1.2	13
169	Ultrasound-Assisted Synthesis of Nanoparticles for Energy and Environmental Applications. , 2016, , 423-456.		2
170	Ultrasonic Modification of Micelle Nanostructures. , 2016, , 491-524.		0
171	The Growth of Bubbles in an Acoustic Field by Rectified Diffusion. , 2016, , 69-98.		8
172	Ultrasonic Synthesis and Characterization of Polymer-Shelled Microspheres., 2016,, 1021-1047.		1
173	Theory of Sonochemistry. Topics in Current Chemistry, 2016, 374, 56.	3.0	59
174	One-step electrochemical deposition of Ni _{1â^2x} Mo _x S ternary sulfides as an efficient counter electrode for dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 16119-16127.	5.2	80
175	Modification of pea protein isolate for ultrasonic encapsulation of functional liquids. RSC Advances, 2016, 6, 106130-106140.	1.7	22
176	Shape-Dependent Interactions of Palladium Nanocrystals with Hydrogen. Small, 2016, 12, 2450-2458.	5.2	34
177	Sodium Atom Emission from Aqueous Surfactant Solutions Exposed to Ultrasound. Langmuir, 2016, 32, 12387-12393.	1.6	6
178	Sonoprocessing of <scp>L</scp> i <scp>F</scp> e <scp>PO</scp> ₄ nanoparticles and nanocomposites for cathode material in lithium ion batteries. Polymer Composites, 2016, 37, 1874-1880.	2.3	2
179	The effect of sonication and high pressure homogenisation on the properties of pure cream. Innovative Food Science and Emerging Technologies, 2016, 33, 298-307.	2.7	35
180	Ultrasonic Synthesis of Functional Materials. Springer Briefs in Molecular Science, 2016, , 17-40.	0.1	8

#	Article	IF	CITATIONS
181	Ultrasonic Synthesis of Functional Materials. Springer Briefs in Molecular Science, 2016, , .	0.1	8
182	Carrier separation and charge transport characteristics of reduced graphene oxide supported visible-light active photocatalysts. Physical Chemistry Chemical Physics, 2016, 18, 5179-5191.	1.3	84
183	Synthesis of morphology-controlled bismutite for selective applications. Physical Chemistry Chemical Physics, 2016, 18, 7768-7779.	1.3	28
184	Temperature dependent mechanical properties of air, oil and water filled microcapsules studied by atomic force microscopy. Polymer, 2016, 102, 333-341.	1.8	18
185	Ultrasound Assisted Crystallization of Paracetamol: Crystal Size Distribution and Polymorph Control. Crystal Growth and Design, 2016, 16, 1934-1941.	1.4	105
186	Enhanced Room Temperature Ferromagnetism by Fe Doping in Zn0.96Cu0.040 Diluted Magnetic Semiconductors. Journal of Electronic Materials, 2016, 45, 976-982.	1.0	7
187	Viscosity and hydrodynamic radius relationship of high-power ultrasound depolymerised starch pastes with different amylose content. Food Hydrocolloids, 2016, 52, 183-191.	5.6	56
188	Sonochemical synthesis of Cu2O nanocubes for enhanced chemiluminescence applications. Ultrasonics Sonochemistry, 2016, 29, 388-393.	3.8	38
189	Initial growth of sonochemically active and sonoluminescence bubbles at various frequencies. Ultrasonics Sonochemistry, 2016, 29, 55-59.	3.8	14
190	Enhancement and quenching of high-intensity focused ultrasound cavitation activity via short frequency sweep gaps. Ultrasonics Sonochemistry, 2016, 29, 194-197.	3.8	11
191	Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications. Ultrasonics Sonochemistry, 2016, 29, 568-576.	3.8	212
192	Ultrasonic Modification of Micelle Nanostructures. , 2016, , 1-34.		1
193	Sonochemical Synthesis of Layered Copper Hydroxy Nitrate Nanosheets. ChemPhysChem, 2015, 16, 3389-3391.	1.0	28
194	Synthesis and characterization of a CuS–WO ₃ composite photocatalyst for enhanced visible light photocatalytic activity. RSC Advances, 2015, 5, 52718-52725.	1.7	129
195	Influence of He and Ar Flow Rates and NaCl Concentration on the Size Distribution of Bubbles Generated by Power Ultrasound. Journal of Physical Chemistry B, 2015, 119, 12682-12688.	1.2	26
196	Ultrasound-Assisted Synthesis of Nanoparticles for Energy and Environmental Applications. , 2015, , 1-34.		4
197	Optimization of precursor based on optical, structural and magnetic properties of Cu-doped ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 2015, 26, 8108-8117.	1.1	0
198	Preparation of CuO mesocrystals via antlerite intermediate for photocatalytic applications. Crystal Research and Technology, 2015, 50, 143-149.	0.6	8

#	Article	IF	CITATIONS
199	Process intensification of copper chromite (CuCr2O4) nanoparticle production using continuous flow microreactor. Chemical Engineering and Processing: Process Intensification, 2015, 89, 28-34.	1.8	18
200	Experimental and theoretical analysis of secondary Bjerknes forces between two bubbles in a standing wave. Ultrasonics, 2015, 58, 35-42.	2.1	41
201	Enhanced room temperature ferromagnetism and photoluminescence behavior of Cu-doped ZnO co-doped with Mn. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 69, 354-359.	1.3	31
202	Sonochemical Synthesis of Gold Nanoparticles by Using High Intensity Focused Ultrasound. ChemPhysChem, 2015, 16, 775-781.	1.0	48
203	Structural, optical, dielectric and antibacterial studies of Mn doped Zn0.96Cu0.04O nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 144, 1-7.	2.0	55
204	Structural, morphological and spectroscopic investigation of Mn doped Zn0.96Cu0.040 nanoparticles. Journal of Materials Science: Materials in Electronics, 2015, 26, 1225-1233.	1.1	6
205	Diffused sunlight driven highly synergistic pathway for complete mineralization of organic contaminants using reduced graphene oxide supported photocatalyst. Journal of Hazardous Materials, 2015, 291, 83-92.	6.5	119
206	Effect of Ni doping on electrical, photoluminescence and magnetic behavior of Cu doped ZnO nanoparticles. Journal of Luminescence, 2015, 162, 97-103.	1.5	82
207	Role of Counterions in Controlling the Properties of Ultrasonically Generated Chitosan-Stabilized Oil-in-Water Emulsions. ACS Applied Materials & Emp; Interfaces, 2015, 7, 12972-12980.	4.0	16
208	Heat transfer intensification using polyaniline based nanofluids: Preparation and application. Chemical Engineering and Processing: Process Intensification, 2015, 95, 195-201.	1.8	29
209	Microstructural and band gap exploration on Ni-doped SnO2 nanoparticles co-doped with Cu. Journal of Materials Science: Materials in Electronics, 2015, 26, 3989-3996.	1.1	11
210	Characterization of Ultrasonically Prepared Flaxseed oil Enriched Beverage/Carrot Juice Emulsions and Process-Induced Changes to the Functional Properties of Carrot Juice. Food and Bioprocess Technology, 2015, 8, 1258-1266.	2.6	29
211	Ultrasonic fabrication of TiO ₂ /chitosan hybrid nanoporous microspheres with antimicrobial properties. RSC Advances, 2015, 5, 20265-20269.	1.7	16
212	Comment on "Shining Light on Nanochemistry Using Silver Nanoparticle-Enhanced Luminol Chemiluminescence― Journal of Chemical Education, 2015, 92, 1778-1778.	1.1	0
213	Structural, band gap and photoluminescence behaviour of Mn-doped ZnS quantum dots annealed under Ar atmosphere. Journal of Materials Science: Materials in Electronics, 2015, 26, 1533-1542.	1.1	47
214	Synthesis of a visible-light active V $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 5 $<$ /sub $>$ â \in "g-C $<$ sub $>$ 3 $<$ /sub $>$ N $<$ sub $>$ 4 $<$ /sub $>$ heterojunction as an efficient photocatalytic and photoelectrochemical material. New Journal of Chemistry, 2015, 39, 1367-1374.	1.4	183
215	Ultrasound assisted formation of Al–Ni electrocatalyst for hydrogen evolution. Ultrasonics Sonochemistry, 2015, 23, 142-147.	3.8	39
216	Applications of ultrasound in food and bioprocessing. Ultrasonics Sonochemistry, 2015, 25, 17-23.	3.8	232

#	Article	IF	CITATIONS
217	Ultrasonic transformation of micelle structures: Effect of frequency and power. Ultrasonics Sonochemistry, 2015, 24, 8-12.	3.8	16
218	Electrical, dielectric, photoluminescence and magnetic properties of ZnO nanoparticles co-doped with Co and Cu. Journal of Magnetism and Magnetic Materials, 2015, 374, 61-66.	1.0	77
219	Influence of acoustic pressure and bubble sizes on the coalescence of two contacting bubbles in an acoustic field. Ultrasonics Sonochemistry, 2015, 22, 70-77.	3.8	30
220	Ultrasonic Modification of Micelle Structures. , 2015, , 1-34.		1
221	The Growth of Bubbles in an Acoustic Field by Rectified Diffusion. , 2015, , 1-30.		1
222	Degradation of 4-chlorophenol and NOx Using Ultrasonically Synthesized TiO2 Loaded Graphene Oxide Photocatalysts. Science of Advanced Materials, 2015, 7, 1149-1155.	0.1	7
223	Removal of Heavy Metal from Wastewater. , 2015, , 1-27.		1
224	Ultrasonic Synthesis and Characterisation of Polymer-Shelled Microspheres., 2015,, 1-27.		0
225	Effect of Cr-doping on dielectric, electric and magnetic properties of Zn0.96Cu0.04O nanopowders. Powder Technology, 2014, 268, 80-85.	2.1	30
226	Heat stability and acid gelation properties of calcium-enriched reconstituted skim milk affected by ultrasonication. Journal of Dairy Research, 2014, 81, 238-244.	0.7	14
227	Sonochemically synthesized mono and bimetallic Au–Ag reduced graphene oxide based nanocomposites with enhanced catalytic activity. Ultrasonics Sonochemistry, 2014, 21, 1948-1953.	3.8	65
228	Functional properties of ultrasonically generated flaxseed oil-dairy emulsions. Ultrasonics Sonochemistry, 2014, 21, 1649-1657.	3.8	55
229	Zn0.96â^'xCu0.04FexO (0⩽x⩽0.04) alloys – Optical and structural studies. Superlattices and Microstructures, 2014, 69, 53-64.	1.4	23
230	Ultrasound assisted synthesis of Sn nanoparticles-stabilized reduced graphene oxide nanodiscs. Ultrasonics Sonochemistry, 2014, 21, 920-923.	3.8	18
231	Dissolution and reconstitution of casein micelle containing dairy powders by high shear using ultrasonic and physical methods. Ultrasonics Sonochemistry, 2014, 21, 1658-1665.	3.8	61
232	Inactivation of microorganisms by low-frequency high-power ultrasound: 2. A simple model for the inactivation mechanism. Ultrasonics Sonochemistry, 2014, 21, 454-460.	3.8	99
233	Inactivation of microorganisms by low-frequency high-power ultrasound: 1. Effect of growth phase and capsule properties of the bacteria. Ultrasonics Sonochemistry, 2014, 21, 446-453.	3.8	182
234	A comparison of the physical properties of ultrasonically synthesized lysozyme- and BSA-shelled microbubbles. Ultrasonics Sonochemistry, 2014, 21, 23-28.	3.8	19

#	Article	IF	CITATIONS
235	A Comparison of the Effectiveness of Sonication, High Shear Mixing and Homogenisation on Improving the Heat Stability of Whey Protein Solutions. Food and Bioprocess Technology, 2014, 7, 556-566.	2.6	58
236	Temperature-induced modification on the structural, optical and morphological properties of Zn0.96Cu0.04O nanoparticles. Journal of Materials Science: Materials in Electronics, 2014, 25, 398-407.	1.1	3
237	The effects of liquid height/volume, initial concentration of reactant and acoustic power on sonochemical oxidation. Ultrasonics Sonochemistry, 2014, 21, 1988-1993.	3.8	40
238	Band gap tailoring, structural and morphological behavior of Zn0.96â^'x Co0.04Cu x O (0Ââ‰ÂxÂâ‰Â0.10) alloys by sol–gel method. Journal of Materials Science: Materials in Electronics, 2014, 25, 2004-2015.	1.1	14
239	Effect of heat-treatment on the structural and optical properties of Cu2S thin films deposited by CBD method. Journal of Materials Science: Materials in Electronics, 2014, 25, 824-831.	1.1	9
240	The use of ultrasonic feed pre-treatment to reduce membrane fouling in whey ultrafiltration. Journal of Membrane Science, 2014, 453, 230-239.	4.1	48
241	Inactivation of Enterobacter aerogenes in reconstituted skim milk by high- and low-frequency ultrasound. Ultrasonics Sonochemistry, 2014, 21, 2099-2106.	3.8	51
242	Effect of surfactants on single bubble sonoluminescence behavior and bubble surface stability. Physical Review E, 2014, 89, 043007.	0.8	15
243	Composition dependent optical, structural and photoluminescence behaviour of CdS:Al thin films by chemical bath deposition method. Ceramics International, 2014, 40, 10657-10666.	2.3	35
244	Influence of Co-doping on the structural, optical and morphological properties of Zn0.96Mn0.04O nanoparticles by sol–gel method. Optical Materials, 2014, 36, 797-803.	1.7	21
245	Ultrasonic preparation of stable flax seed oil emulsions in dairy systems – Physicochemical characterization. Food Hydrocolloids, 2014, 39, 151-162.	5.6	169
246	Microstructure, optical and FTIR studies of Ni, Cu co-doped ZnO nanoparticles by co-precipitation method. Optical Materials, 2014, 37, 671-678.	1.7	99
247	Structural and optical properties of Y, Cu co-doped ZnO nanoparticles by sol–gel method. Superlattices and Microstructures, 2014, 74, 247-260.	1.4	26
248	Structural, optical and morphological properties of La, Cu co-doped SnO2 nanocrystals by co-precipitation method. Optical Materials, 2014, 37, 425-432.	1.7	25
249	Effect of Partitioning on Sonochemical Reactor Performance under 200 kHz Indirect Sonication. Industrial & Engineering Chemistry Research, 2014, 53, 9340-9347.	1.8	2
250	Sonochemical synthesis of graphene oxide supported Pt–Pd alloy nanocrystals as efficient electrocatalysts for methanol oxidation. Journal of Solid State Electrochemistry, 2014, 18, 3163-3171.	1.2	27
251	Multibubble Sonoluminescence in Ethylene Glycol/Water Mixtures. Journal of Physical Chemistry B, 2014, 118, 337-343.	1.2	6
252	Ultrasound-assisted degradation of methyl orange in a micro reactor. Journal of Environmental Chemical Engineering, 2014, 2, 1841-1845.	3.3	11

#	Article	IF	CITATIONS
253	Novel molecularly imprinted polymeric microspheres for preconcentration and preservation of polycyclic aromatic hydrocarbons from environmental samples. Analytical and Bioanalytical Chemistry, 2014, 406, 5313-5321.	1.9	25
254	Structural and optical properties of Cd1â°'xZnxS (OÂâ‰ÂxÂâ‰Â0.3) nanoparticles. Journal of Materials Science: Materials in Electronics, 2014, 25, 3308-3317.	1.1	17
255	Modifications in band gap and optical properties of Zn0.96â^xNd0.04CuxO (xÂ=Â0, 0.05, 0.1 and 0.15) nanoparticles. Journal of Sol-Gel Science and Technology, 2014, 70, 133-141.	1.1	4
256	Zn0.91Cu0.04M0.05O (M=Ni, Co, Cr) nanocrystals: Structural study and energy gap tailoring. Materials Letters, 2014, 131, 302-305.	1.3	13
257	Photocatalytic and photoelectrochemical studies of visible-light active α-Fe ₂ O ₃ –g-C ₃ N ₄ nanocomposites. RSC Advances, 2014, 4, 38222-38229.	1.7	207
258	Cu doping effect on optical, structural and morphological properties of Cd0.9Zn0.1S thin films. Journal of Luminescence, 2014, 145, 167-174.	1.5	27
259	Microstructure and band gap tailoring of Zn0.96â^'xCu0.04CoxO (0⩽x⩽0.04) nanoparticles prepared by co-precipitation method. Journal of Alloys and Compounds, 2014, 587, 606-612.	2.8	38
260	Inactivation of bacteria and yeast using high-frequency ultrasound treatment. Water Research, 2014, 60, 93-104.	5.3	109
261	Tuning of energy gap, microstructure, optical and structural properties of Cr doped Zn0.96Cu0.04O nanoparticles. Powder Technology, 2014, 258, 157-164.	2.1	46
262	Photocatalytic Properties of CdS Nanoparticles Synthesized under Various Ultrasonic Operating Conditions. Industrial & Engineering Chemistry Research, 2014, 53, 715-722.	1.8	7
263	Sonication of milk protein solutions prior to spray drying and the subsequent effects on powders during storage. Journal of Food Engineering, 2014, 141, 122-127.	2.7	12
264	Influence of mixing and ultrasound frequency on antisolvent crystallisation of sodium chloride. Ultrasonics Sonochemistry, 2014, 21, 60-68.	3.8	71
265	Development of Multifunctional Nanomaterials by Cavitation. , 2014, , 1-28.		2
266	Electrochemical investigation of the interaction between lysozyme-shelled microbubbles and vitamin C. Analytical and Bioanalytical Chemistry, 2013, 405, 5531-5538.	1.9	7
267	CoFe2O4/TiO2 nanocatalysts for the photocatalytic degradation of Reactive Red 120 in aqueous solutions in the presence and absence of electron acceptors. Chemical Engineering Journal, 2013, 220, 302-310.	6.6	123
268	Tuning of chalcogenide nanoparticles fluorescence by Schiff bases. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 254, 12-19.	2.0	3
269	Cu-doping effect on the structural, optical and photoluminescence properties of Sn0.98Cr0.02O2 nanoparticles by co-precipitation method. Journal of Materials Science: Materials in Electronics, 2013, 24, 2581-2592.	1.1	11
270	Ultrasound-induced formation of high and low viscoelastic nanostructures of micelles. Soft Matter, 2013, 9, 1997.	1.2	16

#	Article	IF	Citations
271	Size Dependent Structural and Optical Properties of Cd0.9Zn0.1S Thin Films. Physics Procedia, 2013, 49, 137-144.	1.2	13
272	Mechanical Characterization of Ultrasonically Synthesized Microbubble Shells by Flow Cytometry and AFM. ACS Applied Materials & Samp; Interfaces, 2013, 5, 10920-10925.	4.0	19
273	Experimental and Theoretical Studies on the Movements of Two Bubbles in an Acoustic Standing Wave Field. Journal of Physical Chemistry B, 2013, 117, 12549-12555.	1.2	35
274	pH-induced modification on the structural, optical and morphological properties of Zn0.94Ni0.04Mn0.02O nanopowders. Journal of Materials Science: Materials in Electronics, 2013, 24, 5189-5198.	1.1	3
275	A Facile One-Step Synthesis of Hollow Polydiphenylamine. International Journal of Polymeric Materials and Polymeric Biomaterials, 2013, 62, 23-27.	1.8	4
276	Antimicrobial and Biosensing Ultrasound-Responsive Lysozyme-Shelled Microbubbles. ACS Applied Materials & Samp; Interfaces, 2013, 5, 464-471.	4.0	31
277	Ultrasonic enhancement of the acidity, surface area and free fatty acids esterification catalytic activity of sulphated ZrO 2 –TiO 2 systems. Journal of Catalysis, 2013, 297, 17-26.	3.1	65
278	Sonoluminescence quenching and cavitation bubble temperature measurements in an ionic liquid. Ultrasonics Sonochemistry, 2013, 20, 47-51.	3.8	16
279	Ultrasound assisted synthesis and characterization of poly(methyl methacrylate)/CaCO3 nanocomposites. Chemical Engineering Journal, 2013, 219, 254-261.	6.6	25
280	Conjugated polymer based on oligobenzo[c]thiophene with low-lying HOMO energy level as potential donor for bulk heterojunction solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 262, 34-44.	2.0	20
281	Use of Power Ultrasound to Improve Extraction and Modify Phase Transitions in Food Processing. Food Reviews International, 2013, 29, 67-91.	4.3	99
282	Ultrasound Assisted Miniemulsion Polymerization for Preparation of Polypyrrole–Zinc Oxide (PPy/ZnO) Functional Latex for Liquefied Petroleum Gas Sensing. Industrial & Engineering Chemistry Research, 2013, 52, 7704-7712.	1.8	92
283	Synergistic photodynamic action of ZnO nanomaterials encapsulated meso-tetra (4-sulfonatophenyl) porphyrin. Powder Technology, 2013, 237, 497-505.	2.1	24
284	Photocatalytic degradation of ternary dye mixture in aqueous environment using gold nanoparticles loaded amino and mercapto functionalized TiMCM-41 nanocatalysts in the presence of visible light. Separation and Purification Technology, 2013, 102, 67-74.	3.9	17
285	Sonophotocatalytic degradation of paracetamol using TiO2 and Fe3+. Separation and Purification Technology, 2013, 103, 114-118.	3.9	73
286	On the Generation of the Hydrated Electron during the Sonolysis of Aqueous Solutions. Journal of Physical Chemistry A, 2013, 117, 2409-2414.	1.1	27
287	Correlation between sonochemistry and sonoluminescence at various frequencies. RSC Advances, 2013, 3, 9319.	1.7	17
288	Influence of ultrasound on chemically induced gelation of micellar casein systems. Journal of Dairy Research, 2013, 80, 138-143.	0.7	37

#	Article	IF	CITATIONS
289	Influence of the Morphology of Lysozymeâ€Shelled Microparticles on the Cellular Association, Uptake, and Degradation in Human Breast Adenocarcinoma Cells. Particle and Particle Systems Characterization, 2013, 30, 695-705.	1.2	11
290	Methods of Preparation of Multifunctional Microbubbles and their In Vitro / In Vivo Assessment of Stability, Functional and Structural Properties. Current Pharmaceutical Design, 2012, 18, 2135-2151.	0.9	35
291	The effect of ultrasound on the physical and functional properties of skim milk. Innovative Food Science and Emerging Technologies, 2012, 16, 251-258.	2.7	165
292	Oneâ€Step Sonochemical Synthesis of Reduced Graphene Oxide/Pt/Sn Hybrid Materials and Their Electrochemical Properties. Fuel Cells, 2012, 12, 956-962.	1.5	28
293	The effects of high-intensity ultrasound on the structural and functional properties of α-Lactalbumin, β-Lactoglobulin and their mixtures. Food Research International, 2012, 48, 940-943.	2.9	85
294	Sonoluminescence and sonochemiluminescence from a microreactor. Ultrasonics Sonochemistry, 2012, 19, 1252-1259.	3.8	53
295	Synthesis of conjugated perylene diimide-based copolymer with 5,5′-bis(4-aminophenyl)-2-2′-bifuryl moiety as an active material for organic photovoltaics. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 247, 52-62.	2.0	14
296	Sonochemistry and hydrothermal pathways to the fabrication of ZnO nanowire transistors. , 2012, , .		0
297	MODIFICATION OF THE SIZE DISTRIBUTION OF LYSOZYME MICROBUBBLES USING A POST-SONICATION TECHNIQUE. Instrumentation Science and Technology, 2012, 40, 51-60.	0.9	11
298	Photocatalytic Generation of Hydrogen Using Sonoluminescence and Sonochemiluminescence. Journal of Physical Chemistry C, 2012, 116, 1056-1060.	1.5	20
299	The Behavior of Acoustic Bubbles in Aqueous Solutions Containing Soluble Polymers. Journal of Physical Chemistry B, 2012, 116, 13806-13811.	1.2	8
300	Characterization of the Structural Transitions in CTAB Micelles Using Fluorescein Isothiocyanate. Journal of Physical Chemistry C, 2012, 116, 15019-15027.	1.5	14
301	On-line extractive separation in flow injection analysis based on polymer inclusion membranes: A study on membrane stability and approaches for improving membrane permeability. Talanta, 2012, 97, 382-387.	2.9	27
302	Confinement of Acoustic Cavitation for the Synthesis of Protein-Shelled Nanobubbles for Diagnostics and Nucleic Acid Delivery. ACS Macro Letters, 2012, 1, 853-856.	2.3	34
303	Dual-frequency ultrasound for designing two dimensional catalyst surface: Reduced graphene oxide–Pt composite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 409, 81-87.	2.3	30
304	The effect of ultrasound on casein micelle integrity. Journal of Dairy Science, 2012, 95, 6882-6890.	1.4	104
305	Attenuation of UV Light in Large-Scale Sonophotocatalytic Reactors: The Effects of Ultrasound Irradiation and TiO ₂ Concentration. Industrial & Description of Engineering Chemistry Research, 2012, 51, 232-239.	1.8	36
306	Ultrasonics in food processing – Food quality assurance and food safety. Trends in Food Science and Technology, 2012, 26, 88-98.	7.8	192

#	Article	IF	CITATIONS
307	Reaction of Ferricyanide and Methyl Viologen with Free Radicals Produced by Ultrasound in Aqueous Solutions. Journal of Physical Chemistry A, 2012, 116, 7775-7782.	1.1	13
308	The Effect of Feed Pre–treatment by Ultrasound on Dairy Ultrafiltration Membranes. Procedia Engineering, 2012, 44, 1910-1912.	1.2	2
309	A New Look at Cavitation and the Applications of Its Liquid-Phase Effects in the Processing of Food and Fuel. Applied Physics Research, 2012, 4, .	0.2	8
310	Ultrasound-assisted Ullmann Reaction of Alkyl and Aromatic Amines with Substituted Benzoic Acids using Copper Catalyst. Organic Preparations and Procedures International, 2012, 44, 271-280.	0.6	3
311	Molecular properties of lysozyme-microbubbles: towards the protein and nucleic acid delivery. Amino Acids, 2012, 43, 885-896.	1.2	15
312	Comparison of calorimetric energy and cavitation energy for the removal of bisphenol-A: The effects of frequency and liquid height. Chemical Engineering Journal, 2012, 183, 39-45.	6.6	44
313	Sonochemical synthesis of Bi2CuO4 nanoparticles for catalytic degradation of nonylphenol ethoxylate. Chemical Engineering Journal, 2012, 183, 46-52.	6.6	39
314	Graphene oxide based Pt–TiO2 photocatalyst: Ultrasound assisted synthesis, characterization and catalytic efficiency. Ultrasonics Sonochemistry, 2012, 19, 9-15.	3.8	172
315	Acoustic emission spectra and sonochemical activity in a 36 kHz sonoreactor. Ultrasonics Sonochemistry, 2012, 19, 16-21.	3.8	45
316	Quantification of high-power ultrasound induced damage on potato starch granules using light microscopy. Ultrasonics Sonochemistry, 2012, 19, 421-426.	3.8	80
317	A novel approach for enhancing metal ion separation using acoustic nebulisation. Ultrasonics Sonochemistry, 2012, 19, 435-439.	3.8	4
318	Comparison of energy consumptions between ultrasonic, mechanical, and combined soil washing processes. Ultrasonics Sonochemistry, 2012, 19, 395-398.	3.8	42
319	Ultrasonics in food processing. Ultrasonics Sonochemistry, 2012, 19, 975-983.	3.8	318
320	Ultrasound-Assisted Synthesis of Hybrid Phosphomolybdate–Polybenzidine Containing Silver Nanoparticles for Electrocatalytic Detection of Chlorate, Bromate and Iodate Ions in Aqueous Solutions. Electrocatalysis, 2012, 3, 22-29.	1.5	27
321	Tailoring the properties of ultrasonically synthesised microbubbles. Soft Matter, 2011, 7, 623-630.	1.2	48
322	One-pot ultrasonic synthesis of multifunctional microbubbles and microcapsules using synthetic thiolated macromolecules. Chemical Communications, 2011, 47, 4096.	2.2	38
323	Sonochemical polymerization of miniemulsions in organic liquids/water mixtures. Physical Chemistry Chemical Physics, 2011, 13, 4095.	1.3	24
324	Bubble Coalescence during Acoustic Cavitation in Aqueous Electrolyte Solutions. Langmuir, 2011, 27, 12025-12032.	1.6	66

#	Article	IF	CITATIONS
325	The Role of Surfactant Headgroup, Chain Length, and Cavitation Microstreaming on the Growth of Bubbles by Rectified Diffusion. Journal of Physical Chemistry C, 2011, 115, 24310-24316.	1.5	53
326	Comparison of Ultrasonic and Conventional Mechanical Soil-Washing Processes for Diesel-Contaminated Sand. Industrial & Engineering Chemistry Research, 2011, 50, 2400-2407.	1.8	53
327	Kinetics and Mechanism for the Sonophotocatalytic Degradation of <i>p</i> -Chlorobenzoic Acid. Journal of Physical Chemistry A, 2011, 115, 6582-6588.	1.1	39
328	Ultrasonic Recovery and Modification of Food Ingredients. Food Engineering Series, 2011, , 345-368.	0.3	17
329	The Physical and Chemical Effects of Ultrasound. Food Engineering Series, 2011, , 1-12.	0.3	79
330	Theoretical and Experimental Sonochemistry Involving Inorganic Systems. , 2011, , .		32
331	Mechanistic Investigations on Sonophotocatalytic Degradation of Textile Dyes with Surface Active Solutes. Industrial & Engineering Chemistry Research, 2011, 50, 11485-11494.	1.8	46
332	Geometric Optimization of Sonoreactors for the Enhancement of Sonochemical Activity. Journal of Physical Chemistry C, 2011, 115, 4096-4103.	1.5	84
333	Amorphous Titania-Coated Magnetite Spherical Nanoparticles: Sonochemical Synthesis and Catalytic Degradation of Nonylphenol Ethoxylate. Industrial & Engineering Chemistry Research, 2011, 50, 7874-7881.	1.8	15
334	Ultrasound assisted preparation of nanoclay Bentonite-FeCo nanocomposite hybrid hydrogel: A potential responsive sorbent for removal of organic pollutant from water. Desalination, 2011, 281, 429-437.	4.0	85
335	Influence of 2,6 (N-pyrazolyl)isonicotinic acid on the photovoltaic properties of a dye-sensitized solar cell fabricated using poly(vinylidene fluoride) blended with poly(ethylene oxide) polymer electrolyte. Electrochimica Acta, 2011, 56, 8811-8817.	2.6	38
336	Sonochemical Synthesis of Magnetic Janus Nanoparticles. Langmuir, 2011, 27, 30-33.	1.6	65
337	Synthesis of Fe3+ doped TiO2 photocatalysts for the visible assisted degradation of an azo dye. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 375, 231-236.	2.3	64
338	Sonochemical synthesis and characterisation of thermoresponsive microgel particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 377, 342-348.	2.3	4
339	The enhancement of foam generated by low power ultrasound and its application to foam fractionation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 380, 35-40.	2.3	6
340	Development and optimization of acoustic bubble structures at high frequencies. Ultrasonics Sonochemistry, 2011, 18, 92-98.	3.8	65
341	Sonophotocatalytic degradation of 4-chlorophenol using Bi2O3/TiZrO4 as a visible light responsive photocatalyst. Ultrasonics Sonochemistry, 2011, 18, 135-139.	3.8	73
342	The mechanism of sonochemical degradation of a cationic surfactant in aqueous solution. Ultrasonics Sonochemistry, 2011, 18, 484-488.	3.8	23

#	Article	IF	CITATIONS
343	The characterization of acoustic cavitation bubbles – An overview. Ultrasonics Sonochemistry, 2011, 18, 864-872.	3.8	615
344	Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate. Ultrasonics Sonochemistry, 2011, 18, 951-957.	3.8	489
345	Dynamics of counterion binding during acoustic nebulisation of surfactant solutions. Ultrasonics Sonochemistry, 2011, 18, 958-962.	3.8	4
346	The mechanism of sonophotocatalytic degradation of methyl orange and its products in aqueous solutions. Ultrasonics Sonochemistry, 2011, 18, 974-980.	3.8	103
347	Ultrasonic Membrane Processing. Food Engineering Series, 2011, , 583-598.	0.3	2
348	Effect of ultrasound on the physical and functional properties of reconstituted whey protein powders. Journal of Dairy Research, 2011, 78, 226-232.	0.7	114
349	The ultrasonic processing of dairy products – An overview. Dairy Science and Technology, 2010, 90, 147-168.	2.2	151
350	Spatial Distribution of Acoustic Cavitation Bubbles at Different Ultrasound Frequencies. ChemPhysChem, 2010, 11, 1680-1684.	1.0	86
351	Photoluminescence properties of sonochemically synthesized gold nanoparticles for DNA biosensing. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 76, 191-196.	2.0	8
352	Degradation of formetanate hydrochloride by combined advanced oxidation processes. Separation and Purification Technology, 2010, 73, 409-414.	3.9	17
353	Degradation of acid red 88 by the combination of sonolysis and photocatalysis. Separation and Purification Technology, 2010, 74, 336-341.	3.9	101
354	Sonophotocatalytic degradation of monocrotophos using TiO2 and Fe3+. Journal of Hazardous Materials, 2010, 177, 944-949.	6.5	92
355	Combined advanced oxidation processes for the synergistic degradation of ibuprofen in aqueous environments. Journal of Hazardous Materials, 2010, 178, 202-208.	6.5	241
356	Preparation and properties of visible light responsive ZrTiO4/Bi2O3 photocatalysts for 4-chlorophenol decomposition. Journal of Hazardous Materials, 2010, 182, 557-562.	6.5	53
357	The use of sonication to increase extraction rate in polymer inclusion membranes. An application to the extraction of gold(III). Journal of Membrane Science, 2010, 365, 242-247.	4.1	37
358	The interaction of sonochemically synthesized gold nanoparticles with serum albumins. Journal of Pharmaceutical and Biomedical Analysis, 2010, 53, 804-810.	1.4	89
359	Bubble population phenomena in sonochemical reactor: II. Estimation of bubble size distribution and its number density by simple coalescence model calculation. Ultrasonics Sonochemistry, 2010, 17, 480-486.	3.8	44
360	Bubble population phenomena in sonochemical reactor: I Estimation of bubble size distribution and its number density with pulsed sonication – Laser diffraction method. Ultrasonics Sonochemistry, 2010, 17, 473-479.	3.8	55

#	Article	IF	CITATIONS
361	Sonochemical synthesis of liquid-encapsulated lysozyme microspheres. Ultrasonics Sonochemistry, 2010, 17, 333-337.	3.8	47
362	Degradation of orange-G by advanced oxidation processes. Ultrasonics Sonochemistry, 2010, 17, 338-343.	3.8	122
363	Ultrasonic processing of dairy systems in large scale reactors. Ultrasonics Sonochemistry, 2010, 17, 1075-1081.	3.8	182
364	Sonochemical synthesis and characterization of gold–ruthenium bimetallic nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 356, 140-144.	2.3	36
365	Hydrodynamic Cavitation-Assisted Synthesis of Nanocalcite. International Journal of Chemical Engineering, 2010, 2010, 1-8.	1.4	24
366	The Design of Multifunctional Microbubbles for Ultrasound Image-Guided Cancer Therapy. Current Topics in Medicinal Chemistry, 2010, 10, 1198-1210.	1.0	57
367	Sonochemical Synthesis of ZnO Encapsulated Functional Nanolatex and its Anticorrosive Performance. Industrial & Engineering Chemistry Research, 2010, 49, 2200-2205.	1.8	42
368	Acoustic Bubble Sizes, Coalescence, and Sonochemical Activity in Aqueous Electrolyte Solutions Saturated with Different Gases. Langmuir, 2010, 26, 12690-12695.	1.6	67
369	Synthesis of Temperature Responsive Poly($\langle i \rangle N \langle i \rangle$ -isopropylacrylamide) Using Ultrasound Irradiation. Journal of Physical Chemistry B, 2010, 114, 3178-3184.	1.2	41
370	Growth of Bubbles by Rectified Diffusion in Aqueous Surfactant Solutions. Journal of Physical Chemistry C, 2010, 114, 20141-20145.	1.5	49
371	Sonochemical oxidation of arsenic(III) to arsenic(V) using potassium peroxydisulfate as an oxidizing agent. Water Research, 2010, 44, 3687-3695.	5.3	122
372	Sonolytic Design of Grapheneâ^'Au Nanocomposites. Simultaneous and Sequential Reduction of Graphene Oxide and Au(III). Journal of Physical Chemistry Letters, 2010, 1, 1987-1993.	2.1	197
373	Ultrasound assisted photocatalytic degradation of diclofenac in an aqueous environment. Chemosphere, 2010, 80, 747-752.	4.2	133
374	Ultrasound-Assisted Preparation of Semiconductor/Polymer Photoanodes and Their Photoelectrochemical Properties. Journal of Physical Chemistry C, 2010, 114, 5148-5153.	1.5	27
375	Characterization of Acoustic Cavitation Bubbles in Different Sound Fields. Journal of Physical Chemistry B, 2010, 114, 11010-11016.	1,2	31
376	Sonochemical Preparation of Monometallic, Bimetallic and Metal-Loaded Semiconductor Nanoparticles., 2010,, 151-169.		2
377	The Role of Salts in Acoustic Cavitation and the Use of Inorganic Complexes as Cavitation Probes. , 2010, , 357-379.		0
378	Kinetics of the sonophotocatalytic degradation of orange G in presence of Fe3 +. Water Science and Technology, 2009, 60, 2195-2202.	1.2	13

#	Article	IF	CITATIONS
379	Microbial synthesis of silver nanoparticles by Bacillus sp Journal of Nanoparticle Research, 2009, 11, 1811-1815.	0.8	239
380	Selected Applications of Ultrasonics in Food Processing. Food Engineering Reviews, 2009, 1, 31-49.	3.1	99
381	Sonochemical degradation of martius yellow dye in aqueous solution. Ultrasonics Sonochemistry, 2009, 16, 28-34.	3.8	62
382	Sonoluminescence quenching in aqueous solutions of aliphatic diols and glycerol. Ultrasonics Sonochemistry, 2009, 16, 23-27.	3.8	9
383	Sonochemical synthesis of Aua+" <mml:math altimg="si1.gif" overflow="scroll" xmins:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mm< td=""><td>ovs>8 mml</td><td>:mរាo 2</td></mm<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	ov s> 8 mml	:m រា o 2
384	environment. Ultrasonics Sonochemistry, 2009, 16, 316-320. The pasting properties of sonicated waxy rice starch suspensions. Ultrasonics Sonochemistry, 2009, 16, 462-468.	3.8	140
385	Minimising oil droplet size using ultrasonic emulsification. Ultrasonics Sonochemistry, 2009, 16, 721-727.	3.8	516
386	Kinetics of degradation of acid red 88 in the presence of Co2+-ion/peroxomonosulphate reagent. Applied Catalysis A: General, 2009, 368, 35-39.	2.2	47
387	Cavitation activation by dual-frequency ultrasound and shock waves. Physical Chemistry Chemical Physics, 2009, 11, 10029.	1.3	27
388	High Intensity Ultrasound Initiated Polymerization of Butyl Methacrylate in Mini- and Microemulsions. Macromolecules, 2009, 42, 4479-4483.	2.2	25
389	Kinetics and Mechanism for the Sonochemical Degradation of a Nonionic Surfactant. Journal of Physical Chemistry A, 2009, 113, 2865-2872.	1.1	30
390	Novel One-Pot Synthesis of Magnetite Latex Nanoparticles by Ultrasound Irradiation. Langmuir, 2009, 25, 2593-2595.	1.6	67
391	Visible light assisted photocatalytic degradation of acid red 88 using Au–ZnO nanophotocatalysts. Water Science and Technology, 2009, 60, 1589-1596.	1.2	14
392	Frequency Effects during Acoustic Cavitation in Surfactant Solutions. Journal of Physical Chemistry B, 2009, 113, 16568-16573.	1.2	11
393	Effect of Power and Frequency on Bubble-Size Distributions in Acoustic Cavitation. Physical Review Letters, 2009, 102, 084302.	2.9	385
394	Simple and Efficient Sonochemical Method for the Oxidation of Arsenic(III) to Arsenic(V). Environmental Science & Environmenta	4.6	69
395	The detection and control of stable and transient acoustic cavitation bubbles. Physical Chemistry Chemical Physics, 2009, 11, 10118.	1.3	74
396	Hot topic: Sonication increases the heat stability of whey proteins. Journal of Dairy Science, 2009, 92, 5353-5356.	1.4	131

#	Article	IF	Citations
397	Ultrasound initiated miniemulsion polymerization of methacrylate monomers. Ultrasonics Sonochemistry, 2008, 15, 89-94.	3.8	91
398	Sonoluminescence, sonochemistry (H2O2 yield) and bubble dynamics: Frequency and power effects. Ultrasonics Sonochemistry, 2008, 15, 143-150.	3.8	246
399	Sensitivity enhancement in membrane separation flow injection analysis by ultrasound. Ultrasonics Sonochemistry, 2008, 15, 151-156.	3.8	13
400	Experimental and theoretical investigations on sonoluminescence under dual frequency conditions. Ultrasonics Sonochemistry, 2008, 15, 629-635.	3.8	67
401	Sonochemical Synthesis of Auâ^'Ag Coreâ^'Shell Bimetallic Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 15102-15105.	1.5	170
402	Ultrasonic Synthesis of Stable, Functional Lysozyme Microbubbles. Langmuir, 2008, 24, 10078-10083.	1.6	147
403	Modification of food ingredients by ultrasound to improve functionality: A preliminary study on a model system. Innovative Food Science and Emerging Technologies, 2008, 9, 155-160.	2.7	340
404	The use of ultrasonics for nanoemulsion preparation. Innovative Food Science and Emerging Technologies, 2008, 9, 170-175.	2.7	521
405	Photocatalytic degradation of Acid Red 88 using Au–TiO2 nanoparticles in aqueous solutions. Water Research, 2008, 42, 4878-4884.	5.3	109
406	Microemulsion Polymerizations via High-Frequency Ultrasound Irradiation. Journal of Physical Chemistry B, 2008, 112, 5265-5267.	1.2	36
407	Sonochemistry and Sonoluminescence under Simultaneous High- and Low-Frequency Irradiation. Journal of Physical Chemistry C, 2008, 112, 8343-8348.	1.5	27
408	Ultrasonic Nebulization in Aqueous Solutions and the Role of Interfacial Adsorption Dynamics in Surfactant Enrichment. Langmuir, 2008, 24, 10133-10137.	1.6	20
409	Sonochemistry and Sonoluminescence under Dual-Frequency Ultrasound Irradiation in the Presence of Water-Soluble Solutes. Journal of Physical Chemistry C, 2008, 112, 10247-10250.	1.5	41
410	Sonochemical synthesis of single crystal Pd nanoparitles in aqueous solution. Materials Research Innovations, 2008, 12, 52-54.	1.0	3
411	Acoustic Emission Spectra from 515 kHz Cavitation in Aqueous Solutions Containing Surface-Active Solutes. Journal of the American Chemical Society, 2007, 129, 2250-2258.	6.6	85
412	Estimation of Cavitation Bubble Temperatures in an Ionic Liquid. Journal of Physical Chemistry C, 2007, 111, 18461-18463.	1.5	17
413	The effect of surface active solutes on bubbles in an acoustic field. Physical Chemistry Chemical Physics, 2007, 9, 5631.	1.3	56
414	Effect of Water-Soluble Solutes on Sonoluminescence under Dual-Frequency Sonication. Journal of Physical Chemistry C, 2007, 111, 3066-3070.	1.5	37

#	Article	IF	Citations
415	Study of the Coalescence of Acoustic Bubbles as a Function of Frequency, Power, and Water-Soluble Additives. Journal of the American Chemical Society, 2007, 129, 6031-6036.	6.6	114
416	Influence of Surface-Active Solutes on the Coalescence, Clustering, and Fragmentation of Acoustic Bubbles Confined in a Microspace. Journal of Physical Chemistry C, 2007, 111, 19015-19023.	1.5	42
417	Correlation between Na* Emission and "Chemically Active―Acoustic Cavitation Bubbles. ChemPhysChem, 2007, 8, 2331-2335.	1.0	59
418	Bubbles in an acoustic field: An overview. Ultrasonics Sonochemistry, 2007, 14, 470-475.	3.8	280
419	The application of ultrasound to dairy ultrafiltration: The influence of operating conditions. Journal of Food Engineering, 2007, 81, 364-373.	2.7	86
420	Sonochemically Prepared Platinumâ^'Ruthenium Bimetallic Nanoparticles. Journal of Physical Chemistry B, 2006, 110, 3849-3852.	1.2	99
421	APPLICATION OF ULTRASOUND IN MEMBRANE SEPARATION PROCESSES: A REVIEW. Reviews in Chemical Engineering, 2006, 22, .	2.3	103
422	Determination of Temperatures within Acoustically Generated Bubbles in Aqueous Solutions at Different Ultrasound Frequencies. Journal of Physical Chemistry B, 2006, 110, 13656-13660.	1.2	119
423	Effect of Alcohols on the Initial Growth of Multibubble Sonoluminescence. Journal of Physical Chemistry B, 2006, 110, 17282-17285.	1.2	26
424	Limitations of the Methyl Radical Recombination Method for Acoustic Cavitation Bubble Temperature Measurements in Aqueous Solutions. Journal of Physical Chemistry B, 2006, 110, 9779-9781.	1.2	25
425	The dissolution of a stationary spherical bubble beneath a flat plate. Chemical Engineering Science, 2006, 61, 7697-7705.	1.9	19
426	Ultrasonic enhancement of the supercritical extraction from ginger. Ultrasonics Sonochemistry, 2006, 13, 471-479.	3.8	215
427	Sonochemical synthesis of ruthenium nanoparticles. Research on Chemical Intermediates, 2006, 32, 709-715.	1.3	40
428	Controlled Growth of Sonochemically Synthesized Gold Seed Particles in Aqueous Solutions Containing Surfactants. Australian Journal of Chemistry, 2005, 58, 667.	0.5	11
429	Mechanisms for the ultrasonic enhancement of dairy whey ultrafiltration. Journal of Membrane Science, 2005, 258, 106-114.	4.1	147
430	The optimisation of ultrasonic cleaning procedures for dairy fouled ultrafiltration membranes. Ultrasonics Sonochemistry, 2005, 12, 29-35.	3.8	150
431	Estimation of ultrasound induced cavitation bubble temperatures in aqueous solutions. Ultrasonics Sonochemistry, 2005, 12, 325-329.	3.8	226
432	The Influence of Acoustic Power on Multibubble Sonoluminescence in Aqueous Solution Containing Organic Solutes. Journal of Physical Chemistry B, 2005, 109, 20044-20050.	1.2	50

#	Article	IF	CITATIONS
433	Effect of Surfactants on Inertial Cavitation Activity in a Pulsed Acoustic Field. Journal of Physical Chemistry B, 2005, 109, 16860-16865.	1.2	38
434	Effect of Surfactants on the Rate of Growth of an Air Bubble by Rectified Diffusion. Journal of Physical Chemistry B, 2005, 109, 14595-14598.	1.2	90
435	The Effect of Surface-Active Solutes on Bubble Coalescence in the Presence of Ultrasound. Journal of Physical Chemistry B, 2005, 109, 5095-5099.	1.2	89
436	A Comparison between Multibubble Sonoluminescence Intensity and the Temperature within Cavitation Bubbles. Journal of the American Chemical Society, 2005, 127, 5326-5327.	6.6	106
437	Sonochemical Synthesis of Gold Nanoparticles:Â Effects of Ultrasound Frequency. Journal of Physical Chemistry B, 2005, 109, 20673-20675.	1.2	321
438	Acoustic Emission from Cavitating Solutions:  Implications for the Mechanisms of Sonochemical Reactions. Journal of Physical Chemistry B, 2005, 109, 17799-17801.	1.2	53
439	Determination of the Size Distribution of Sonoluminescence Bubbles in a Pulsed Acoustic Field. Journal of the American Chemical Society, 2005, 127, 16810-16811.	6.6	169
440	Proton Transfer between Organic Acids and Bases at the Acoustic Bubbleâ [*] Aqueous Solution Interface. Journal of Physical Chemistry B, 2005, 109, 19356-19359.	1.2	6
441	The use of ultrasonic cleaning for ultrafiltration membranes in the dairy industry. Separation and Purification Technology, 2004, 39, 99-107.	3.9	147
442	The mechanism of the sonochemical degradation of benzoic acid in aqueous solutions. Research on Chemical Intermediates, 2004, 30, 723-733.	1.3	67
443	Single Bubble Sonoluminescence–A Chemist's Overview. ChemPhysChem, 2004, 5, 439-448.	1.0	48
444	Sonoluminescence Quenching of Organic Compounds in Aqueous Solution:Â Frequency Effects and Implications for Sonochemistry. Journal of the American Chemical Society, 2004, 126, 2755-2762.	6.6	77
445	Sonoluminescence Emission from Aqueous Solutions of Organic Monomers. Journal of Physical Chemistry B, 2003, 107, 14124-14129.	1.2	13
446	Multibubble Sonoluminescence from Aqueous Solutions Containing Mixtures of Surface Active Solutesâ€. Journal of Physical Chemistry B, 2003, 107, 7307-7311.	1.2	38
447	Sonochemical Production of Fluorescent and Phosphorescent Latex Particles. Journal of the American Chemical Society, 2003, 125, 525-529.	6.6	69
448	Sonochemical Degradation of Sodium Dodecylbenzene Sulfonate in Aqueous Solutions. Australian Journal of Chemistry, 2003, 56, 1045.	0.5	37
449	Ultrasonic treatment of Cryptosporidium oocysts. Water Science and Technology, 2003, 47, 173-177.	1.2	23
450	Effect of surfactants, polymers, and alcohol on single bubble dynamics and sonoluminescence. Physical Review E, 2002, 65, 046310.	0.8	43

#	Article	IF	CITATIONS
451	Sonochemical Formation of Gold Sols. Langmuir, 2002, 18, 7831-7836.	1.6	156
452	Comparison of the Effects of Water-Soluble Solutes on Multibubble Sonoluminescence Generated in Aqueous Solutions by 20- and 515-kHz Pulsed Ultrasound. Journal of Physical Chemistry B, 2002, 106, 11064-11068.	1.2	91
453	Sonoluminescence quenching by organic acids in aqueous solution: pH and frequency effects. Chemical Communications, 2002, , 1740-1741.	2.2	24
454	Sonochemical Degradation of a Polydisperse Nonylphenol Ethoxylate in Aqueous Solution. Journal of Physical Chemistry B, 2001, 105, 3338-3342.	1.2	64
455	Synthesis of Tunable, Highly Luminescent QD-Glasses Through Sol-Gel Processing. Advanced Materials, 2001, 13, 985-988.	11.1	107
456	Probing Material Formation in the Presence of Organic and Biological Molecules. Advanced Materials, 2001, 13, 989-992.	11.1	33
457	The effect of surface active solutes on bubbles exposed to ultrasound. Advances in Colloid and Interface Science, 2001, 89-90, 423-438.	7.0	51
458	Sonochemical formation of colloidal platinum. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 169, 219-225.	2.3	64
459	Single-Bubble Sonophotoluminescence. Journal of the American Chemical Society, 2000, 122, 12001-12002.	6.6	24
460	Effect of Solutes on Single-Bubble Sonoluminescence in Water. Journal of Physical Chemistry A, 2000, 104, 8462-8465.	1.1	85
461	Sonoluminescence Quenching in Aqueous Solutions Containing Weak Organic Acids and Bases and Its Relevance to Sonochemistry. Journal of Physical Chemistry B, 2000, 104, 6447-6451.	1.2	31
462	Quantized electroluminescence from Q–CdS films immersed in aqueous electrolytes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 146, 293-298.	2.3	3
463	Multibubble sonoluminescence in aqueous salt solutions. Ultrasonics Sonochemistry, 1999, 6, 7-14.	3.8	57
464	Sonophotoluminescence from aqueous and non-aqueous solutions. Ultrasonics Sonochemistry, 1999, 6, 1-5.	3.8	29
465	Hydrogen and oxygen evolution from water using Ag and AgCl colloids. International Journal of Hydrogen Energy, 1999, 24, 17-20.	3.8	10
466	ULTRASOUND ASSISTED CHEMICAL PROCESSES. Reviews in Chemical Engineering, 1999, 15, .	2.3	121
467	Sonochemistry and Sonoluminescence in Aqueous AuCl4- Solutions in the Presence of Surface-Active Solutes. Journal of Physical Chemistry B, 1999, 103, 9231-9236.	1.2	55
468	The Effect of pH on Multibubble Sonoluminescence from Aqueous Solutions Containing Simple Organic Weak Acids and Bases. Journal of the American Chemical Society, 1999, 121, 7355-7359.	6.6	85

#	Article	IF	CITATIONS
469	Green and red electroluminescence from CdS powder electrodes in aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 141, 143-151.	2.3	5
470	An overview on semiconductor particulate systems for photoproduction of hydrogen. International Journal of Hydrogen Energy, 1998, 23, 427-438.	3.8	327
471	Sonophotoluminescence: pyranine emission induced by ultrasound. Chemical Communications, 1998, , 561-562.	2.2	23
472	Making Photochemically Generated Phenyl Cations Visible by Addition to Aromatics:Â Production of Phenylcyclohexadienyl Cations and Their Reactions with Bases/Nucleophiles. Journal of the American Chemical Society, 1998, 120, 11925-11931.	6.6	43
473	Sonoluminescence from Aqueous Alcohol and Surfactant Solutions. Journal of Physical Chemistry B, 1997, 101, 10845-10850.	1.2	183
474	Photoelectrochemical Properties of RuS2-Coated TiO2Electrodes. Bulletin of the Chemical Society of Japan, 1995, 68, 2491-2496.	2.0	11
475	Synthesis and characterization of RuS2 nanocrystallites. Journal of Materials Science, 1995, 30, 2759-2764.	1.7	14
476	Ultrafast electronic relaxation dynamics: A comparison between water and ionic aqueous solutions. Journal of Molecular Liquids, 1995, 64, 57-71.	2.3	18
477	Short-lived charge-transfer-to-solvent-states and multiple electronic relaxations following femtosecond excitation of aqueous chloride ion. Chemical Physics, 1995, 197, 167-193.	0.9	55
478	Semiconductor sensitization by RuS2 colloids on TiO2 electrodes. Chemical Physics Letters, 1994, 229, 383-388.	1.2	35
479	Photobiocatalysis: hydrogen evolution using a semiconductor coupled with photosynthetic bacteria. International Journal of Hydrogen Energy, 1992, 17, 863-866.	3.8	27
480	Photocatalytic Activities of Bi2O3, WO3, and Fe2O3: An Assessment through Decomposition of Peroxomonosulfate in Visible Radiation. Bulletin of the Chemical Society of Japan, 1991, 64, 1933-1937.	2.0	21
481	Photocatalytic hydrogen production with semiconductor particulate systems: An effort to enhance the efficiency. International Journal of Hydrogen Energy, 1991, 16, 591-595.	3.8	20
482	Preparation and characterization of doped WO3 photocatalyst powders. Journal of Materials Science, 1989, 24, 2135-2139.	1.7	19
483	Hydrogen production with visible light using metal loaded-WO3 and MV2+ in aqueous medium. International Journal of Hydrogen Energy, 1989, 14, 275-277.	3.8	43
484	Hydrogen evolution from water with visible radiation in presence of Cu(II)/WO3 and electron relay. International Journal of Hydrogen Energy, 1989, 14, 525-528.	3.8	53
485	Factors influencing the photocatalytic efficiency of WO3 particles. Journal of Photochemistry and Photobiology A: Chemistry, 1989, 49, 249-258.	2.0	14
486	Hydrogen generation using Cu(II)/WO3 and oxalic acid by visible light. International Journal of Hydrogen Energy, 1988, 13, 677-680.	3.8	32

#	Article	IF	CITATIONS
487	Doping effects of transition metal ions on the photosensitization of WO3 particles. Solar Energy Materials and Solar Cells, 1988, 17, 433-438.	0.4	23
488	Visible Light Assisted Heterogeneous Catalysis. Decomposition of Peroxomonosulfate over Doped and Undoped WO3Dispersions in Aqueous Medium. Bulletin of the Chemical Society of Japan, 1988, 61, 4137-4141.	2.0	12
489	Sonochemical Synthesis of Inorganic and Organic Colloids. , 0, , 120-149.		2