Thomas Churcher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6435197/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimising the deployment of vector control tools against malaria: a data-informed modelling study. Lancet Planetary Health, The, 2022, 6, e100-e109.	11.4	34
2	Design and methods for a quasi-experimental pilot study to evaluate the impact of dual active ingredient insecticide-treated nets on malaria burden in five regions in sub-Saharan Africa. Malaria Journal, 2022, 21, 19.	2.3	8
3	Risk of Plasmodium falciparum infection in south-west Burkina Faso: potential impact of expanding eligibility for seasonal malaria chemoprevention. Scientific Reports, 2022, 12, 1402.	3.3	6
4	Comparative efficacy of two pyrethroid-piperonyl butoxide nets (Olyset Plus and PermaNet 3.0) against pyrethroid resistant malaria vectors: a non-inferiority assessment. Malaria Journal, 2022, 21, 20.	2.3	13
5	Durability of three types of dual active ingredient long-lasting insecticidal net compared to a pyrethroid-only LLIN in Tanzania: methodology for a prospective cohort study nested in a cluster randomized controlled trial. Malaria Journal, 2022, 21, 96.	2.3	7
6	An evidence synthesis approach for combining different data sources illustrated using entomological efficacy of insecticides for indoor residual spraying. PLoS ONE, 2022, 17, e0263446.	2.5	1
7	The potential impact of Anopheles stephensi establishment on the transmission of Plasmodium falciparum in Ethiopia and prospective control measures. BMC Medicine, 2022, 20, 135.	5.5	22
8	Inferring the epidemiological benefit of indoor vector control interventions against malaria from mosquito data. Nature Communications, 2022, 13, .	12.8	16
9	Systematic review of the entomological impact of insecticide-treated nets evaluated using experimental hut trials in Africa. Current Research in Parasitology and Vector-borne Diseases, 2021, 1, 100047.	1.9	19
10	Reaching beyond crop protection: Synergism between agricultural development and malaria eradication. , 2021, , 125-144.		0
11	Quantifying individual variability in exposure risk to mosquito bites in the Cascades region, Burkina Faso. Malaria Journal, 2021, 20, 44.	2.3	13
12	<i>Anopheles stephensi</i> Mosquitoes as Vectors of <i>Plasmodiumvivax</i> and <i>falciparum</i> , Horn of Africa, 2019. Emerging Infectious Diseases, 2021, 27, 603-607.	4.3	74
13	Estimating the extrinsic incubation period of malaria using a mechanistic model of sporogony. PLoS Computational Biology, 2021, 17, e1008658.	3.2	20
14	Predicting the public health impact of a malaria transmission-blocking vaccine. Nature Communications, 2021, 12, 1494.	12.8	19
15	Detection of Plasmodium falciparum in laboratory-reared and naturally infected wild mosquitoes using near-infrared spectroscopy. Scientific Reports, 2021, 11, 10289.	3.3	9
16	Using syndromic measures of mortality to capture the dynamics of COVID-19 in Java, Indonesia, in the context of vaccination rollout. BMC Medicine, 2021, 19, 146.	5.5	7
17	Monoclonal antibodies block transmission of genetically diverse Plasmodium falciparum strains to mosquitoes. Npj Vaccines, 2021, 6, 101.	6.0	24
18	Review and Meta-Analysis of the Evidence for Choosing between Specific Pyrethroids for Programmatic Purposes. Insects, 2021, 12, 826.	2.2	20

#	Article	IF	CITATIONS
19	The entomological impact of passive metofluthrin emanators against indoor Aedes aegypti: A randomized field trial. PLoS Neglected Tropical Diseases, 2021, 15, e0009036.	3.0	21
20	Assessing the impact of low-technology emanators alongside long-lasting insecticidal nets to control malaria. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190817.	4.0	5
21	Mosquito Age Grading and Vector-Control Programmes. Trends in Parasitology, 2020, 36, 39-51.	3.3	27
22	Barrier bednets target malaria vectors and expand the range of usable insecticides. Nature Microbiology, 2020, 5, 40-47.	13.3	28
23	Potential impact of the COVID-19 pandemic on HIV, tuberculosis, and malaria in low-income and middle-income countries: a modelling study. The Lancet Clobal Health, 2020, 8, e1132-e1141.	6.3	573
24	High Plasmodium infection intensity in naturally infected malaria vectors in Africa. International Journal for Parasitology, 2020, 50, 985-996.	3.1	25
25	The potential public health consequences of COVID-19 on malaria in Africa. Nature Medicine, 2020, 26, 1411-1416.	30.7	128
26	The influence of feeding behaviour and temperature on the capacity of mosquitoes to transmit malaria. Nature Ecology and Evolution, 2020, 4, 940-951.	7.8	17
27	Ability of near-infrared spectroscopy and chemometrics to predict the age of mosquitoes reared under different conditions. Parasites and Vectors, 2020, 13, 160.	2.5	13
28	Protein O-Fucosyltransferase 2 Is Not Essential for Plasmodium berghei Development. Frontiers in Cellular and Infection Microbiology, 2019, 9, 238.	3.9	10
29	Mosquito feeding behavior and how it influences residual malaria transmission across Africa. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15086-15095.	7.1	172
30	The male mosquito contribution towards malaria transmission: Mating influences the Anopheles female midgut transcriptome and increases female susceptibility to human malaria parasites. PLoS Pathogens, 2019, 15, e1008063.	4.7	25
31	Transmission-blocking Effects of Primaquine and Methylene Blue Suggest Plasmodium falciparum Gametocyte Sterilization Rather Than Effects on Sex Ratio. Clinical Infectious Diseases, 2019, 69, 1436-1439.	5.8	21
32	Immunization with Transgenic Rodent Malaria Parasites Expressing Pfs25 Induces Potent Transmission-Blocking Activity. Scientific Reports, 2018, 8, 1573.	3.3	7
33	Monitoring the Age of Mosquito Populations Using Near-Infrared Spectroscopy. Scientific Reports, 2018, 8, 5274.	3.3	53
34	Strengthening long-lasting insecticidal nets effectiveness monitoring using retrospective analysis of cross-sectional, population-based surveys across sub-Saharan Africa. Scientific Reports, 2018, 8, 17110.	3.3	22
35	Systematic review of indoor residual spray efficacy and effectiveness against Plasmodium falciparum in Africa. Nature Communications, 2018, 9, 4982.	12.8	90
36	Using ante-natal clinic prevalence data to monitor temporal changes in malaria incidence in a humanitarian setting in the Democratic Republic of Congo. Malaria Journal, 2018, 17, 312.	2.3	14

#	Article	IF	CITATIONS
37	Synergy in anti-malarial pre-erythrocytic and transmission-blocking antibodies is achieved by reducing parasite density. ELife, 2018, 7, .	6.0	32
38	Detection of Plasmodium berghei infected Anopheles stephensi using near-infrared spectroscopy. Parasites and Vectors, 2018, 11, 377.	2.5	26
39	Predicting the likelihood and intensity of mosquito infection from sex specific Plasmodium falciparum gametocyte density. ELife, 2018, 7, .	6.0	93
40	A novel model fitted to multiple life stages of malaria for assessing efficacy of transmission-blocking interventions. Malaria Journal, 2017, 16, 137.	2.3	7
41	Generating the evidence base for malaria elimination: the situation in Haiti. The Lancet Global Health, 2017, 5, e16-e17.	6.3	1
42	Examining the human infectious reservoir for Plasmodium falciparum malaria in areas of differing transmission intensity. Nature Communications, 2017, 8, 1133.	12.8	174
43	Evaluation of two lead malaria transmission blocking vaccine candidate antibodies in natural parasite-vector combinations. Scientific Reports, 2017, 7, 6766.	3.3	35
44	Comparative assessment of An. gambiae and An. stephensi mosquitoes to determine transmission-reducing activity of antibodies against P. falciparum sexual stage antigens. Parasites and Vectors, 2017, 10, 489.	2.5	19
45	Probability of Transmission of Malaria from Mosquito to Human Is Regulated by Mosquito Parasite Density in NaÃīve and Vaccinated Hosts. PLoS Pathogens, 2017, 13, e1006108.	4.7	104
46	Associations between Season and Gametocyte Dynamics in Chronic Plasmodium falciparum Infections. PLoS ONE, 2016, 11, e0166699.	2.5	28
47	The impact of pyrethroid resistance on the efficacy and effectiveness of bednets for malaria control in Africa. ELife, 2016, 5, .	6.0	194
48	Urogenital schistosomiasis in women of reproductive age and pregnant mothers in Kwale County, Kenya. Journal of Helminthology, 2015, 89, 105-111.	1.0	11
49	Estimation of changes in the force of infection for intestinal and urogenital schistosomiasis in countries with schistosomiasis control initiative-assisted programmes. Parasites and Vectors, 2015, 8, 558.	2.5	16
50	Lead Clinical and Preclinical Antimalarial Drugs Can Significantly Reduce Sporozoite Transmission to Vertebrate Populations. Antimicrobial Agents and Chemotherapy, 2015, 59, 490-497.	3.2	23
51	Experimental study of the relationship between Plasmodium gametocyte density and infection success in mosquitoes; implications for the evaluation of malaria transmission-reducing interventions. Experimental Parasitology, 2015, 149, 74-83.	1.2	69
52	Human-to-mosquito transmission efficiency increases as malaria is controlled. Nature Communications, 2015, 6, 6054.	12.8	72
53	Efficacy and Safety of the Mosquitocidal Drug Ivermectin to Prevent Malaria Transmission After Treatment: A Double-Blind, Randomized, Clinical Trial. Clinical Infectious Diseases, 2015, 60, 357-365.	5.8	99
54	Improving statistical inference on pathogen densities estimated by quantitative molecular methods: malaria gametocytaemia as a case study. BMC Bioinformatics, 2015, 16, 5.	2.6	17

#	Article	IF	CITATIONS
55	Design of a Phase III cluster randomized trial to assess the efficacy and safety of a malaria transmission blocking vaccine. Vaccine, 2015, 33, 1518-1526.	3.8	40
56	Comparative Assessment of Transmission-Blocking Vaccine Candidates against Plasmodium falciparum. Scientific Reports, 2015, 5, 11193.	3.3	106
57	Development of Malaria Transmission-Blocking Vaccines: From Concept to Product. Advances in Parasitology, 2015, 89, 109-152.	3.2	82
58	Therapeutic Efficacy and Macrofilaricidal Activity of Doxycycline for the Treatment of River Blindness. Clinical Infectious Diseases, 2015, 60, 1199-1207.	5.8	94
59	Vaccine approaches to malaria control and elimination: Insights from mathematical models. Vaccine, 2015, 33, 7544-7550.	3.8	21
60	A Scalable Assessment of Plasmodium falciparum Transmission in the Standard Membrane-Feeding Assay, Using Transgenic Parasites Expressing Green Fluorescent Protein–Luciferase. Journal of Infectious Diseases, 2014, 210, 1456-1463.	4.0	48
61	A Male and Female Gametocyte Functional Viability Assay To Identify Biologically Relevant Malaria Transmission-Blocking Drugs. Antimicrobial Agents and Chemotherapy, 2014, 58, 7292-7302.	3.2	112
62	Reaching the London Declaration on Neglected Tropical Diseases Goals for Onchocerciasis: An Economic Evaluation of Increasing the Frequency of Ivermectin Treatment in Africa. Clinical Infectious Diseases, 2014, 59, 923-932.	5.8	82
63	Measuring the path toward malaria elimination. Science, 2014, 344, 1230-1232.	12.6	84
64	Neglected tools for neglected diseases: mathematical models in economic evaluations. Trends in Parasitology, 2014, 30, 562-570.	3.3	31
65	Models for measuring anthelmintic drug efficacy for parasitologists. Trends in Parasitology, 2014, 30, 528-537.	3.3	21
66	Transmission blocking activity of Azadirachta indica and Guiera senegalensis extracts on the sporogonic development of Plasmodium falciparum field isolates in Anopheles coluzzii mosquitoes. Parasites and Vectors, 2014, 7, 185.	2.5	19
67	Modelling the impact of ivermectin on River Blindness and its burden of morbidity and mortality in African Savannah: EpiOncho projections. Parasites and Vectors, 2014, 7, 241.	2.5	55
68	Antibodies to a Single, Conserved Epitope in Anopheles APN1 Inhibit Universal Transmission of Plasmodium falciparum and Plasmodium vivax Malaria. Infection and Immunity, 2014, 82, 818-829.	2.2	62
69	Immunisation against a serine protease inhibitor reduces intensity of Plasmodium berghei infection in mosquitoes. International Journal for Parasitology, 2013, 43, 869-874.	3.1	19
70	Reductions in genetic diversity of Schistosoma mansoni populations under chemotherapeutic pressure: the effect of sampling approach and parasite population definition. Acta Tropica, 2013, 128, 196-205.	2.0	21
71	Can field-based mosquito feeding assays be used for evaluating transmission-blocking interventions?. Trends in Parasitology, 2013, 29, 53-59.	3.3	45
72	Transmission-blocking interventions eliminate malaria from laboratory populations. Nature Communications, 2013, 4, 1812.	12.8	95

#	Article	IF	CITATIONS
73	The Cost of Annual versus Biannual Community-Directed Treatment of Onchocerciasis with Ivermectin: Ghana as a Case Study. PLoS Neglected Tropical Diseases, 2013, 7, e2452.	3.0	41
74	Uncertainty Surrounding Projections of the Long-Term Impact of Ivermectin Treatment on Human Onchocerciasis. PLoS Neglected Tropical Diseases, 2013, 7, e2169.	3.0	50
75	Association between Response to Albendazole Treatment and \hat{I}^2 -Tubulin Genotype Frequencies in Soil-transmitted Helminths. PLoS Neglected Tropical Diseases, 2013, 7, e2247.	3.0	131
76	Costs of crowding for the transmission of malaria parasites. Evolutionary Applications, 2013, 6, 617-629.	3.1	29
77	THE IMPORTANCE OF MOSQUITO BEHAVIOURAL ADAPTATIONS TO MALARIA CONTROL IN AFRICA. Evolution; International Journal of Organic Evolution, 2013, 67, 1218-1230.	2.3	253
78	Predicting mosquito infection from Plasmodium falciparum gametocyte density and estimating the reservoir of infection. ELife, 2013, 2, e00626.	6.0	175
79	Modulation of Malaria Infection in Anopheles gambiae Mosquitoes Exposed to Natural Midgut Bacteria. PLoS ONE, 2013, 8, e81663.	2.5	56
80	A Research Agenda for Helminth Diseases of Humans: Modelling for Control and Elimination. PLoS Neglected Tropical Diseases, 2012, 6, e1548.	3.0	85
81	Hitting Hotspots: Spatial Targeting of Malaria for Control and Elimination. PLoS Medicine, 2012, 9, e1001165.	8.4	460
82	The design and interpretation of laboratory assays measuring mosquito transmission of Plasmodium. Trends in Parasitology, 2012, 28, 457-465.	3.3	32
83	Measuring the blockade of malaria transmission – An analysis of the Standard Membrane Feeding Assay. International Journal for Parasitology, 2012, 42, 1037-1044.	3.1	162
84	Paradigm lost: how parasite control may alter pattern and process in human helminthiases. Trends in Parasitology, 2012, 28, 161-171.	3.3	25
85	Plasmodium falciparum Produce Lower Infection Intensities in Local versus Foreign Anopheles gambiae Populations. PLoS ONE, 2012, 7, e30849.	2.5	44
86	Mosquito Feeding Assays to Determine the Infectiousness of Naturally Infected Plasmodium falciparum Gametocyte Carriers. PLoS ONE, 2012, 7, e42821.	2.5	168
87	The Potential Contribution of Mass Treatment to the Control of Plasmodium falciparum Malaria. PLoS ONE, 2011, 6, e20179.	2.5	121
88	Human immune responses that reduce the transmission of Plasmodium falciparum in African populations. International Journal for Parasitology, 2011, 41, 293-300.	3.1	56
89	Modelling the impact of vector control interventions on Anopheles gambiae population dynamics. Parasites and Vectors, 2011, 4, 153.	2.5	177
90	Mass Treatment of Parasitic Disease: Implications for the Development and Spread of Anthelmintic Resistance. Issues in Infectious Diseases, 2010, , 120-137.	0.1	5

#	Article	IF	CITATIONS
91	Reducing Plasmodium falciparum Malaria Transmission in Africa: A Model-Based Evaluation of Intervention Strategies. PLoS Medicine, 2010, 7, e1000324.	8.4	451
92	Observed Reductions in Schistosoma mansoni Transmission from Large-Scale Administration of Praziquantel in Uganda: A Mathematical Modelling Study. PLoS Neglected Tropical Diseases, 2010, 4, e897.	3.0	76
93	Population biology of malaria within the mosquito: density-dependent processes and potential implications for transmission-blocking interventions. Malaria Journal, 2010, 9, 311.	2.3	31
94	Identifying sub-optimal responses to ivermectin in the treatment of River Blindness. Proceedings of the United States of America, 2009, 106, 16716-16721.	7.1	77
95	Sampling strategies to detect anthelmintic resistance: the perspective of human onchocerciasis. Trends in Parasitology, 2009, 25, 11-17.	3.3	22
96	Chapter 11 Onchocerca–Simulium Interactions and the Population and Evolutionary Biology of Onchocerca volvulus. Advances in Parasitology, 2009, 68, 263-313.	3.2	56
97	Onchocerciasis Control: Vision for the Future from a Ghanian perspective. Parasites and Vectors, 2009, 2, 7.	2.5	50
98	Anopheles mortality is both age- and Plasmodium-density dependent: implications for malaria transmission. Malaria Journal, 2009, 8, 228.	2.3	93
99	DENSITY DEPENDENCE AND THE SPREAD OF ANTHELMINTIC RESISTANCE. Evolution; International Journal of Organic Evolution, 2008, 62, 528-537.	2.3	42
100	Effect of single-dose ivermectin on Onchocerca volvulus: a systematic review and meta-analysis. Lancet Infectious Diseases, The, 2008, 8, 310-322.	9.1	177
101	Persistence of the emerging pathogen <i>Batrachochytrium dendrobatidis</i> outside the amphibian host greatly increases the probability of host extinction. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 329-334.	2.6	91
102	An Analysis of Genetic Diversity and Inbreeding in Wuchereria bancrofti: Implications for the Spread and Detection of Drug Resistance. PLoS Neglected Tropical Diseases, 2008, 2, e211.	3.0	31
103	An analysis of the population genetics of potential multi-drug resistance in Wuchereria bancrofti due to combination chemotherapy. Parasitology, 2007, 134, 1025-1040.	1.5	53
104	Population genetics of concurrent selection with albendazole and ivermectin or diethylcarbamazine on the possible spread of albendazole resistance in Wuchereria bancrofti. Parasitology, 2006, 133, 589.	1.5	33
105	Density dependence and the control of helminth parasites. Journal of Animal Ecology, 2006, 75, 1313-1320.	2.8	53
106	River Blindness: A Success Story under Threat?. PLoS Medicine, 2006, 3, e371.	8.4	194
107	Density dependence and overdispersion in the transmission of helminth parasites. Parasitology, 2005, 131, 121-132.	1.5	72