Yun Chi

List of Publications by Citations

Source: https://exaly.com/author-pdf/6434882/yun-chi-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

20,247 122 399 73 h-index g-index citations papers 6.72 21,516 421 7.2 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
399	Transition-metal phosphors with cyclometalating ligands: fundamentals and applications. <i>Chemical Society Reviews</i> , 2010 , 39, 638-55	58.5	1098
398	Phosphorescent dyes for organic light-emitting diodes. <i>Chemistry - A European Journal</i> , 2007 , 13, 380-95	54.8	700
397	New Dopant and Host Materials for Blue-Light-Emitting Phosphorescent Organic Electroluminescent Devices. <i>Advanced Materials</i> , 2005 , 17, 285-289	24	633
396	Blue-emitting heteroleptic iridium(III) complexes suitable for high-efficiency phosphorescent OLEDs. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 2418-21	16.4	377
395	Highly efficient blue-emitting iridium(III) carbene complexes and phosphorescent OLEDs. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 4542-5	16.4	358
394	Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance. <i>Nature Photonics</i> , 2017 , 11, 63-68	33.9	346
393	Systematic investigation of the metal-structure-photophysics relationship of emissive d10-complexes of group 11 elements: the prospect of application in organic light emitting devices. <i>Journal of the American Chemical Society</i> , 2011 , 133, 12085-99	16.4	272
392	Iridium(III) complexes with orthometalated quinoxaline ligands: subtle tuning of emission to the saturated red color. <i>Inorganic Chemistry</i> , 2005 , 44, 1344-53	5.1	262
391	Harvesting luminescence via harnessing the photophysical properties of transition metal complexes. <i>Coordination Chemistry Reviews</i> , 2011 , 255, 2653-2665	23.2	251
390	Contemporary progresses on neutral, highly emissive Os(II) and Ru(II) complexes. <i>Chemical Society Reviews</i> , 2007 , 36, 1421-31	58.5	241
389	Iridium-complex-functionalized Fe3O4/SiO2 core/shell nanoparticles: a facile three-in-one system in magnetic resonance imaging, luminescence imaging, and photodynamic therapy. <i>Small</i> , 2008 , 4, 218-2	24^{1}	216
388	Osmium- and Ruthenium-Based Phosphorescent Materials: Design, Photophysics, and Utilization in OLED Fabrication. <i>European Journal of Inorganic Chemistry</i> , 2006 , 2006, 3319-3332	2.3	214
387	Heteroleptic cyclometalated iridium(III) complexes displaying blue phosphorescence in solution and solid state at room temperature. <i>Inorganic Chemistry</i> , 2005 , 44, 7770-80	5.1	203
386	Bis-Tridentate Ir(III) Complexes with Nearly Unitary RGB Phosphorescence and Organic Light-Emitting Diodes with External Quantum Efficiency Exceeding 31%. <i>Advanced Materials</i> , 2016 , 28, 2795-800	24	199
385	Ruthenium(II) sensitizers with heteroleptic tridentate chelates for dye-sensitized solar cells. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 2054-8	16.4	189
384	Simple organic molecules bearing a 3,4-ethylenedioxythiophene linker for efficient dye-sensitized solar cells. <i>Chemical Communications</i> , 2008 , 5152-4	5.8	187
383	En Route to High External Quantum Efficiency (~12%), Organic True-Blue-Light-Emitting Diodes Employing Novel Design of Iridium (III) Phosphors. <i>Advanced Materials</i> , 2009 , 21, 2221-2225	24	186

(2011-2003)

382	Realizing green phosphorescent light-emitting materials from rhenium(i) pyrazolato diimine complexes. <i>Inorganic Chemistry</i> , 2003 , 42, 1248-55	5.1	179	
381	Crystal Organic Light-Emitting Diodes with Perfectly Oriented Non-Doped Pt-Based Emitting Layer. <i>Advanced Materials</i> , 2016 , 28, 2526-32	24	168	
380	Platinum(II) complexes with pyridyl azolate-based chelates: synthesis, structural characterization, and tuning of photo- and electrophosphorescence. <i>Inorganic Chemistry</i> , 2006 , 45, 137-46	5.1	167	
379	Crosslinkable Hole-Transport Layer on Conducting Polymer for High-Efficiency White Polymer Light-Emitting Diodes. <i>Advanced Materials</i> , 2007 , 19, 300-304	24	158	
378	Highly Efficient Red Phosphorescent Osmium(II) Complexes for OLED Applications. <i>Organometallics</i> , 2004 , 23, 3745-3748	3.8	155	
377	In Search of High-Performance Platinum(II) Phosphorescent Materials for the Fabrication of Red Electroluminescent Devices. <i>Advanced Functional Materials</i> , 2005 , 15, 223-229	15.6	155	
376	Bright and Efficient, Non-Doped, Phosphorescent Organic Red-Light-Emitting Diodes. <i>Advanced Functional Materials</i> , 2004 , 14, 1221-1226	15.6	154	
375	Organic Light-Emitting Diodes based on Charge-Neutral Rull Phosphorescent Emitters. <i>Advanced Materials</i> , 2005 , 17, 1059-1064	24	153	
374	Highly Efficient Polymer White-Light-Emitting Diodes Based on Lithium Salts Doped Electron Transporting Layer. <i>Advanced Materials</i> , 2009 , 21, 361-365	24	150	
373	Excited-state intramolecular proton transfer in five-membered hydrogen-bonding systems: 2-pyridyl pyrazoles. <i>Journal of the American Chemical Society</i> , 2003 , 125, 10800-1	16.4	149	
372	Pyridyl Pyrrolide Boron Complexes: The Facile Generation of Thermally Activated Delayed Fluorescence and Preparation of Organic Light-Emitting Diodes. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 3017-21	16.4	142	
371	Atomic layer deposition of noble metals: Exploration of the low limit of the deposition temperature. <i>Journal of Materials Research</i> , 2004 , 19, 3353-3358	2.5	140	
370	Efficient white-light-emitting diodes based on poly(N-vinylcarbazole) doped with blue fluorescent and orange phosphorescent materials. <i>Applied Physics Letters</i> , 2006 , 88, 251110	3.4	135	
369	Highly Efficient Light-Emitting Diodes Based on Fluorene Copolymer Consisting of Triarylamine Units in the Main Chain and Oxadiazole Pendent Groups. <i>Macromolecules</i> , 2005 , 38, 9028-9036	5.5	132	
368	Novel host material for highly efficient blue phosphorescent OLEDs. <i>Journal of Materials Chemistry</i> , 2007 , 17, 1692		130	
367	Organic light-emitting diodes based on charge-neutral Os(II) emitters: generation of saturated red emission with very high external quantum efficiency. <i>Journal of Materials Chemistry</i> , 2005 , 15, 460		129	
366	Rational Design of Charge-Neutral, Near-Infrared-Emitting Osmium(II) Complexes and OLED Fabrication. <i>Advanced Functional Materials</i> , 2009 , 19, 2639-2647	15.6	127	
365	Feeling blue? Blue phosphors for OLEDs. <i>Materials Today</i> , 2011 , 14, 472-479	21.8	126	

364	Donor Cceptor dyes with fluorine substituted phenylene spacer for dye-sensitized solar cells. Journal of Materials Chemistry, 2011 , 21, 1937-1945		120
363	Orange and Red Organic Light-Emitting Devices Employing Neutral Ru(II) Emitters: Rational Design and Prospects for Color Tuning. <i>Advanced Functional Materials</i> , 2006 , 16, 1615-1626	15.6	120
362	A new and facile method to prepare uniform hollow MnO/functionalized mSiOltore/shell nanocomposites. ACS Nano, 2011, 5, 4177-87	16.7	119
361	Dye molecular structure device open-circuit voltage correlation in Ru(II) sensitizers with heteroleptic tridentate chelates for dye-sensitized solar cells. <i>Journal of the American Chemical Society</i> , 2012 , 134, 7488-96	16.4	117
360	Iridium(III) complexes of a dicyclometalated phosphite tripod ligand: strategy to achieve blue phosphorescence without fluorine substituents and fabrication of OLEDs. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 3182-6	16.4	117
359	Development of thiocyanate-free, charge-neutral Ru(II) sensitizers for dye-sensitized solar cells. <i>Chemical Communications</i> , 2010 , 46, 5124-6	5.8	112
358	Rational Color Tuning and Luminescent Properties of Functionalized Boron-Containing 2-Pyridyl Pyrrolide Complexes. <i>Advanced Functional Materials</i> , 2005 , 15, 567-574	15.6	109
357	Design and synthesis of iridium(III) azacrown complex: application as a highly sensitive metal cation phosphorescence sensor. <i>Organic and Biomolecular Chemistry</i> , 2006 , 4, 98-103	3.9	108
356	Metal complexes with pyridyl azolates: Design, preparation and applications. <i>Coordination Chemistry Reviews</i> , 2014 , 281, 1-25	23.2	105
355	A new family of homoleptic Ir(III) complexes: tris-pyridyl azolate derivatives with dual phosphorescence. <i>ChemPhysChem</i> , 2006 , 7, 2294-7	3.2	105
354	Color tuning associated with heteroleptic cyclometalated Ir(III) complexes: influence of the ancillary ligand. <i>Dalton Transactions</i> , 2007 , 1881-90	4.3	105
353	Blue-emitting platinum(II) complexes bearing both pyridylpyrazolate chelate and bridging pyrazolate ligands: synthesis, structures, and photophysical properties. <i>Inorganic Chemistry</i> , 2007 , 46, 11202-12	5.1	102
352	Efficient red electrophosphorescence from a fluorene-based bipolar host material. <i>Organic Electronics</i> , 2009 , 10, 871-876	3.5	100
351	Highly efficient dye-sensitized solar cells based on panchromatic ruthenium sensitizers with quinolinylbipyridine anchors. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 178-83	16.4	98
350	Synthesis and Characterization of Metal Complexes Possessing the 5-(2-Pyridyl) Pyrazolate Ligands: The Observation of Remarkable Osmium-Induced Blue Phosphorescence in Solution at Room Temperature. <i>Organometallics</i> , 2003 , 22, 4938-4946	3.8	97
349	Harvesting highly electronically excited energy to triplet manifolds: state-dependent intersystem crossing rate in Os(II) and Ag(I) complexes. <i>Journal of the American Chemical Society</i> , 2012 , 134, 7715-24	1 ^{16.4}	96
348	Emissive bis-tridentate Ir(III) metal complexes: Tactics, photophysics and applications. <i>Coordination Chemistry Reviews</i> , 2017 , 346, 91-100	23.2	95
347	Monodisperse Starburst Oligofluorene-Functionalized 4,4?,4?-Tris(carbazol-9-yl)-triphenylamines: Their Synthesis and Deep-Blue Fluorescent Properties for Organic Light-Emitting Diode Applications. <i>Advanced Functional Materials</i> , 2007 , 17, 1028-1036	15.6	95

(2012-2008)

Highly Efficient White Polymer Light-Emitting Diodes Based on Nanometer-Scale Control of the Electron Injection Layer Morphology through Solvent Processing. <i>Advanced Materials</i> , 2008 , 20, 1565-15	5 70	95
Neutral, panchromatic Ru(II) terpyridine sensitizers bearing pyridine pyrazolate chelates with superior DSSC performance. <i>Chemical Communications</i> , 2009 , 5844-6	5.8	93
Bis-Tridentate Ir(III) Metal Phosphors for Efficient Deep-Blue Organic Light-Emitting Diodes. <i>Advanced Materials</i> , 2017 , 29, 1702464	24	92
Overcoming the energy gap law in near-infrared OLEDs by exciton libration decoupling. <i>Nature Photonics</i> , 2020 , 14, 570-577	33.9	92
Os(II) Based Green to Red Phosphors: A Great Prospect for Solution-Processed, Highly Efficient Organic Light-Emitting Diodes. <i>Advanced Functional Materials</i> , 2012 , 22, 3491-3499	15.6	92
Tris(thiocyanate) ruthenium(II) sensitizers with functionalized dicarboxyterpyridine for dye-sensitized solar cells. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 8270-4	16.4	89
A diarylborane-substituted carbazole as a universal bipolar host material for highly efficient electrophosphorescence devices. <i>Journal of Materials Chemistry</i> , 2012 , 22, 870-876		88
Highly Efficient Electrophosphorescent Devices with Saturated Red Emission from a Neutral Osmium Complex. <i>Chemistry of Materials</i> , 2005 , 17, 3532-3536	9.6	87
Semi-quantitative assessment of the intersystem crossing rate: an extension of the El-Sayed rule to the emissive transition metal complexes. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 26184-92	3.6	82
Electrophosphorescent Polyfluorenes Containing Osmium Complexes in the Conjugated Backbone. <i>Advanced Functional Materials</i> , 2008 , 18, 1430-1439	15.6	82
Organic dyes with remarkably high absorptivity; all solid-state dye sensitized solar cell and role of fluorine substitution. <i>Chemical Communications</i> , 2010 , 46, 5256-8	5.8	81
Phosphorescent iridium(III) complexes with nonconjugated cyclometalated ligands. <i>Chemistry - A European Journal</i> , 2008 , 14, 5423-34	4.8	81
A new class of sky-blue-emitting Ir(III) phosphors assembled using fluorine-free pyridyl pyrimidine cyclometalates: application toward high-performance sky-blue- and white-emitting OLEDs. <i>ACS Applied Materials & Description</i> (1988), 5, 7341-51	9.5	80
Efficient phosphorescent white OLEDs with high color rendering capability. <i>Organic Electronics</i> , 2010 , 11, 412-418	3.5	78
Indolo[3,2-b]carbazole/benzimidazole hybrid bipolar host materials for highly efficient red, yellow, and green phosphorescent organic light emitting diodes. <i>Journal of Materials Chemistry</i> , 2012 , 22, 8399		77
Luminescent platinum(II) complexes containing isoquinolinyl indazolate ligands: synthetic reaction pathway and photophysical properties. <i>Inorganic Chemistry</i> , 2007 , 46, 7064-74	5.1	77
Novel spiro-based hole transporting materials for efficient perovskite solar cells. <i>Chemical Communications</i> , 2015 , 51, 15518-21	5.8	76
Application of F4TCNQ doped spiro-MeOTAD in high performance solid state dye sensitized solar cells. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 11689-94	3.6	74
	Electron Injection Layer Morphology through Solvent Processing. Advanced Materials, 2008, 20, 1565-13. Neutral, panchromatic Ru(II) terpyridine sensitizers bearing pyridine pyrazolate chelates with superior DSSC performance. Chemical Communications, 2009, 5844-6 Bis-Tridentate Ir(III) Metal Phosphors for Efficient Deep-Blue Organic Light-Emitting Diodes. Advanced Materials, 2017, 29, 1702464 Overcoming the energy gap law in near-infrared OLEDs by exciton@ibration decoupling. Nature Photonics, 2020, 14, 570-577 Os(II) Based Green to Red Phosphors: A Great Prospect for Solution-Processed, Highly Efficient Organic Light-Emitting Diodes. Advanced Functional Materials, 2012, 22, 3491-3499 Tris(thiocyanate) ruthenium(II) sensitizers with functionalized dicarboxyterpyridine for dye-sensitized solar cells. Angewandte Chemie - International Edition, 2011, 50, 8270-4 A diarylborane-substituted carbazole as a universal bipolar host material for highly efficient electrophosphorescente devices. Journal of Materials Chemistry, 2012, 22, 870-876 Highly Efficient Electrophosphorescent Devices with Saturated Red Emission from a Neutral Osmium Complex. Chemistry of Materials, 2005, 17, 3532-3536 Semi-quantitative assessment of the intersystem crossing rate: an extension of the El-Sayed rule to the emissive transition metal complexes. Physical Chemistry Chemical Physics, 2014, 16, 26184-92 Electrophosphorescent Polyfluorenes Containing Osmium Complexes in the Conjugated Backbone. Advanced Functional Materials, 2008, 18, 1430-1439 Organic dyes with remarkably high absorptivity; all solid-state dye sensitized solar cell and role of fluorine substitution. Chemical Communications, 2010, 46, 5256-8 Phosphorescent iridium(III) complexes with nonconjugated cyclometalated ligands. Chemistry - A European Journal, 2008, 14, 5423-34 A new class of sky-blue-emitting Ir(III) phosphors assembled using fluorine-free pyridyl pyrimidine cyclometalates: application toward high-performance sky-blue- and white-emitting OLEDs. ACS Applied	Electron Injection Layer Morphology through Solvent Processing. Advanced Materials, 2008, 20, 1565-1578 Neutral, panchromatic Ru(II) terpyridine sensitizers bearing pyridine pyrazolate chelates with superior DSSC performance. Chemical Communications, 2009, 5844-6 Bis-Tridentate Ir(III) Metal Phosphors for Efficient Deep-Blue Organic Light-Emitting Diodes. Advanced Materials, 2017, 29, 1702464 Overcoming the energy gap law in near-infrared OLEDs by exciton/Bibration decoupling. Nature photonics, 2020, 14, 570-577 OS(II) Based Green to Red Phosphors: A Great Prospect for Solution-Processed, Highly Efficient Organic Light-Emitting Diodes. Advanced Functional Materials, 2012, 22, 3491-3499 15.6 Tris(thiocyanate) ruthenium(II) sensitizers with functionalized dicarboxyterpyridine for dye-sensitized solar cells. Angewandte Chemie - International Edition, 2011, 50, 8270-4 A diarylborane-substituted carbazole as a universal bipolar host material for highly efficient electrophosphorescence devices. Journal of Materials Chemistry, 2012, 22, 870-876 Highly Efficient Electrophosphorescent Devices with Saturated Red Emission from a Neutral Osmilum Complex. Chemistry of Materials, 2005, 17, 3532-3336 Semi-quantitative assessment of the intersystem crossing rate: an extension of the El-Sayed rule to the emissive transition metal complexes. Physical Chemistry Chemical Physics, 2014, 16, 26184-92 Electrophosphorescent Polyfluorenes Containing Osmilum Complexes in the Conjugated Backbone. Advanced Functional Materials, 2008, 18, 1430-1439 Organic dyes with remarkably high absorptivity; all solid-state dye sensitized solar cell and role of fluorine substitution. Chemical Communications, 2010, 46, 5256-8 Phosphorescent iridium(III) complexes with nonconjugated cyclometalated ligands. Chemistry - A European Journal, 2008, 14, 5423-34 A new class of sky-blue-emitting Ir(III) phosphors assembled using fluorine-free pyridyl pyrimidine cyclometalases application toward high-performance sky-blue- and white-emitting OLEDs. AC

328	Switching luminescent properties in osmium-based beta-diketonate complexes. <i>ChemPhysChem</i> , 2005 , 6, 2012-7	3.2	74
327	Mechanoluminescent and efficient white OLEDs for Pt(II) phosphors bearing spatially encumbered pyridinyl pyrazolate chelates. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 7582	7.1	73
326	An Aluminum Complex Supported by a Fluorous Diamino-Dialkoxide Ligand for the Highly Productive Ring-Opening Polymerization of $\bar{\mu}$ -Caprolactone. <i>Organometallics</i> , 2005 , 24, 6279-6282	3.8	73
325	Theoretical Study of N749 Dyes Anchoring on the (TiO2)28 Surface in DSSCs and Their Electronic Absorption Properties. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 16338-16345	3.8	70
324	High-color-rendering pure-white phosphorescent organic light-emitting devices employing only two complementary colors. <i>Organic Electronics</i> , 2010 , 11, 266-272	3.5	69
323	Blue-Emitting Heteroleptic Iridium(III) Complexes Suitable for High-Efficiency Phosphorescent OLEDs. <i>Angewandte Chemie</i> , 2007 , 119, 2470-2473	3.6	69
322	Growth control and characterization of vertically aligned IrO2 nanorods. <i>Journal of Materials Chemistry</i> , 2003 , 13, 2525		69
321	Engineering of osmium(II)-based light absorbers for dye-sensitized solar cells. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 5642-6	16.4	68
320	Mesomorphism and luminescence properties of platinum(II) complexes with tris(alkoxy)phenyl-functionalized pyridyl pyrazolate chelates. <i>Chemistry - A European Journal</i> , 2011 , 17, 546-56	4.8	67
319	Pt(II) metal complexes tailored with a newly designed spiro-arranged tetradentate ligand; harnessing of charge-transfer phosphorescence and fabrication of sky blue and white OLEDs. <i>Inorganic Chemistry</i> , 2015 , 54, 4029-38	5.1	66
318	Engineering of thiocyanate-free Ru(II) sensitizers for high efficiency dye-sensitized solar cells. <i>Chemical Science</i> , 2013 , 4, 2423	9.4	65
317	New Family of Ruthenium-Dye- Sensitized Nanocrystalline TiO2 Solar Cells with a High Solar-Energy-Conversion Efficiency. <i>Advanced Functional Materials</i> , 2007 , 17, 2964-2974	15.6	65
316	Iridium-complex modified CdSe/ZnS quantum dots; a conceptual design for bi-functionality toward imaging and photosensitization. <i>Chemical Communications</i> , 2006 , 615-7	5.8	64
315	A remarkable ligand orientational effect in osmium-atom-induced blue phosphorescence. <i>Chemistry - A European Journal</i> , 2004 , 10, 6255-64	4.8	64
314	Ruthenium and osmium complexes that bear functional azolate chelates for dye-sensitized solar cells. <i>Chemistry - an Asian Journal</i> , 2015 , 10, 1098-115	4.5	63
313	Blue-emitting Ir(III) phosphors with 2-pyridyl triazolate chromophores and fabrication of sky blue-and white-emitting OLEDs. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 2639	7.1	63
312	Phosphorescent Ir(III) complexes bearing double benzyldiphenylphosphine cyclometalates; strategic synthesis, fundamental and integration for white OLED fabrication. <i>Journal of Materials Chemistry</i> , 2010 , 20, 7682		63
311	Blue to true-blue phosphorescent Ir(III) complexes bearing a nonconjugated ancillary phosphine chelate: strategic synthesis, photophysics, and device integration. <i>ACS Applied Materials & Interfaces</i> , 2009, 1, 433-42	9.5	62

310	Anomalously Long-Lasting Blue PhOLED Featuring Phenyl-Pyrimidine Cyclometalated Iridium Emitter. <i>CheM</i> , 2017 , 3, 461-476	16.2	61	
309	Harnessing the open-circuit voltage via a new series of Ru(II) sensitizers bearing (iso-)quinolinyl pyrazolate ancillaries. <i>Energy and Environmental Science</i> , 2013 , 6, 859	35.4	60	
308	Excited-state intramolecular proton transfer (ESIPT) fine tuned by quinoline-pyrazole isomerism: pi-conjugation effect on ESIPT. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 7886-91	2.8	60	
307	Syntheses and remarkable photophysical properties of 5-(2-pyridyl) pyrazolate boron complexes; photoinduced electron transfer. <i>Chemical Communications</i> , 2003 , 2628-9	5.8	60	
306	Room-temperature NIR phosphorescence of new iridium (III) complexes with ligands derived from benzoquinoxaline. <i>Canadian Journal of Chemistry</i> , 2006 , 84, 309-318	0.9	59	
305	Spiro-Phenylpyrazole-9,9?-Thioxanthene Analogues as Hole-Transporting Materials for Efficient Planar Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2017 , 7, 1700823	21.8	58	
304	Functional Pyrimidine-Based Thermally Activated Delay Fluorescence Emitters: Photophysics, Mechanochromism, and Fabrication of Organic Light-Emitting Diodes. <i>Chemistry - A European Journal</i> , 2017 , 23, 2858-2866	4.8	58	
303	Synthesis, characterization, and photophysical properties of Os(II) diimine complexes [Os(N(wedge)N)(CO)(2)I(2)] (N(wedge)N = bipyridine, phenanthroline, and pyridyl benzoxazole). <i>Inorganic Chemistry</i> , 2005 , 44, 4287-94	5.1	58	
302	Optically Triggered Planarization of Boryl-Substituted Phenoxazine: Another Horizon of TADF Molecules and High-Performance OLEDs. <i>ACS Applied Materials & Description of Table Molecules and High-Performance OLEDs. ACS Applied Materials & Description of Table Molecules and High-Performance OLEDs. ACS Applied Materials & Description of Table Molecules and High-Performance OLEDs. ACS Applied Materials & Description of Table Molecules and High-Performance OLEDs. ACS Applied Materials & Description of Table Molecules and High-Performance OLEDs. ACS Applied Materials & Description of Table Molecules and High-Performance OLEDs. ACS Applied Materials & Description of Table Molecules and High-Performance OLEDs. ACS Applied Materials & Description of Table Molecules and High-Performance OLEDs. ACS Applied Materials & Description of Table Molecules and High-Performance OLEDs. ACS Applied Materials & Description of Table Molecules and High-Performance OLEDs. ACS Applied Materials & Description of Table Molecules and High-Performance OLEDs. ACS Applied Materials & Description of Table Molecules and High-Performance OLEDs. ACS Applied Materials & Description of Table Molecules and High-Performance OLEDs. ACS Applied Materials & Description of Table Molecules and High-Performance OLEDs. ACS Applied Molecules Account A</i>	6 ^{9.5}	57	
301	Strategic design and synthesis of osmium(II) complexes bearing a single pyridyl azolate pi-chromophore: achieving high-efficiency blue phosphorescence by localized excitation. <i>Inorganic Chemistry</i> , 2007 , 46, 10276-86	5.1	57	
300	Preparation and Structure of Cp*2Ru2(.muCl)(.muX)(C60), X = H and Cl. Novel Dinuclear Fullerene Complexes with and without Direct Ruthenium-Ruthenium Bonding. <i>Organometallics</i> , 1995 , 14, 4454-4456	3.8	57	
299	Diphenyl(1-naphthyl)phosphine ancillary for assembling of red and orange-emitting Ir(III) based phosphors; strategic synthesis, photophysics, and organic light-emitting diode fabrication. <i>Inorganic Chemistry</i> , 2010 , 49, 8713-23	5.1	56	
298	Blue-emitting Ir(III) phosphors with ancillary 4,6-difluorobenzyl diphenylphosphine based cyclometalate. <i>Dalton Transactions</i> , 2009 , 6472-5	4.3	56	
297	Efficient thermally activated delayed fluorescence of functional phenylpyridinato boron complexes and high performance organic light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 1452-146	5 7 .1	55	
296	Highly Efficient Blue-Emitting Iridium(III) Carbene Complexes and Phosphorescent OLEDs. <i>Angewandte Chemie</i> , 2008 , 120, 4618-4621	3.6	55	
295	Dual room-temperature fluorescent and phosphorescent emission in 8-quinolinolate osmium(II) carbonyl complexes: rationalization and generalization of intersystem crossing dynamics. <i>Inorganic Chemistry</i> , 2005 , 44, 4594-603	5.1	55	
294	Metal Complexes with Azolate-Functionalized Multidentate Ligands: Tactical Designs and Optoelectronic Applications. <i>Chemistry - A European Journal</i> , 2016 , 22, 17892-17908	4.8	54	
293	Bis-Tridentate Iridium(III) Phosphors Bearing Functional 2-Phenyl-6-(imidazol-2-ylidene)pyridine and 2-(Pyrazol-3-yl)-6-phenylpyridine Chelates for Efficient OLEDs. <i>Organometallics</i> , 2016 , 35, 1813-1824	3.8	54	

292	A solution-processable bipolar molecular glass as a host material for white electrophosphorescent devices. <i>Journal of Materials Chemistry</i> , 2008 , 18, 3461		54
291	The empirical correlation between hydrogen bonding strength and excited-state intramolecular proton transfer in 2-pyridyl pyrazoles. <i>Journal of Physical Chemistry A</i> , 2012 , 116, 4438-44	2.8	53
290	Authentic-blue phosphorescent iridium(III) complexes bearing both hydride and benzyl diphenylphosphine; control of the emission efficiency by ligand coordination geometry. <i>Inorganic Chemistry</i> , 2009 , 48, 8164-72	5.1	53
289	Homoleptic tris(pyridyl pyrazolate) Ir(III) complexes: en route to highly efficient phosphorescent OLEDs. <i>Chemistry - A European Journal</i> , 2010 , 16, 4315-27	4.8	51
288	Emissive Pt(II) complexes bearing both cyclometalated ligand and 2-pyridyl hexafluoropropoxide ancillary chelate. <i>Dalton Transactions</i> , 2008 , 6901-11	4.3	51
287	C2-Symmetric Fluorous Diamino-Dialkoxide Complexes of Early Transition Metals. <i>Organometallics</i> , 2004 , 23, 5450-5458	3.8	51
286	Bis-Tridentate Iridium(III) Phosphors with Very High Photostability and Fabrication of Blue-Emitting OLEDs. <i>Advanced Science</i> , 2018 , 5, 1800846	13.6	50
285	Ru(II) sensitizers with a tridentate heterocyclic cyclometalate for dye-sensitized solar cells. <i>Energy and Environmental Science</i> , 2012 , 5, 7549	35.4	50
284	Heteroleptic Ir(III) phosphors with bis-tridentate chelating architecture for high efficiency OLEDs. Journal of Materials Chemistry C, 2015 , 3, 3460-3471	7.1	48
283	Mono- versus dinuclear Pt(II) 6-(5-trifluoromethyl-pyrazol-3-yl)-2,2'-bipyridine complexes: synthesis, characterization, and remarkable difference in luminescent properties. <i>Inorganic Chemistry</i> , 2010 , 49, 1372-83	5.1	48
282	Probing Pb2+ cation via the iridium based phosphorescent dye. <i>Polyhedron</i> , 2007 , 26, 4886-4892	2.7	48
281	Panchromatic Ru(II) sensitizers bearing single thiocyanate for high efficiency dye sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 17618-17627	13	47
280	Phosphorescent OLEDs assembled using Os(II) phosphors and a bipolar host material consisting of both carbazole and dibenzophosphole oxide. <i>Journal of Materials Chemistry</i> , 2012 , 22, 10684		47
279	Emissive osmium(II) complexes with tetradentate bis(pyridylpyrazolate) chelates. <i>Inorganic Chemistry</i> , 2013 , 52, 5867-75	5.1	47
278	Efficient phosphorescent white organic light-emitting devices incorporating blue iridium complex and multifunctional orange Eed osmium complex. <i>Organic Electronics</i> , 2009 , 10, 1235-1240	3.5	47
277	Donor acceptor organic sensitizers assembled with isoxazole or its derivative 3-oxopropanenitrile. <i>Tetrahedron</i> , 2010 , 66, 4223-4229	2.4	47
276	A carbazoleBhenylbenzimidazole hybrid bipolar universal host for high efficiency RGB and white PhOLEDs with high chromatic stability. <i>Journal of Materials Chemistry</i> , 2011 , 21, 19249		46
275	Highly efficient red-electrophosphorescent devices based on polyfluorene copolymers containing charge-transporting pendant units. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 14000-5	3.4	46

(2011-2006)

274	En route to the formation of high-efficiency, osmium(II)-based phosphorescent materials. <i>Inorganic Chemistry</i> , 2006 , 45, 10188-96	5.1	46	
273	PtCoFe Nanowire Cathodes Boost Short-Circuit Currents of Ru(II)-Based Dye-Sensitized Solar Cells to a Power Conversion Efficiency of 12.29%. <i>Advanced Functional Materials</i> , 2018 , 28, 1703282	15.6	45	
272	Phenylcarbazole-dipyridyl triazole hybrid as bipolar host material for phosphorescent OLEDs. Journal of Materials Chemistry, 2012 , 22, 5410		45	
271	Neutral Ru(II)-based emitting materials: a prototypical study on factors governing radiationless transition in phosphorescent metal complexes. <i>Inorganic Chemistry</i> , 2006 , 45, 8041-51	5.1	45	
270	Highly efficient red electrophosphorescent devices based on an iridium complex with trifluoromethyl-substituted pyrimidine ligand. <i>Applied Physics Letters</i> , 2004 , 85, 1619-1621	3.4	44	
269	Performance Characterization of Dye-Sensitized Photovoltaics under Indoor Lighting. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 1824-1830	6.4	43	
268	Heteroleptic Ir(III) complexes containing both azolate chromophoric chelate and diphenylphosphinoaryl cyclometalates; reactivities, electronic properties and applications. <i>Dalton Transactions</i> , 2011 , 40, 1132-43	4.3	43	
267	Highly efficient red organic light-emitting devices based on a fluorene-triphenylamine host doped with an Os(II) phosphor. <i>Applied Physics Letters</i> , 2008 , 92, 233303	3.4	43	
266	Rational Design of Chelating Phosphine Functionalized Os(II) Emitters and Fabrication of Orange Polymer Light-Emitting Diodes Using Solution Process. <i>Advanced Functional Materials</i> , 2008 , 18, 183-19	4 ^{15.6}	43	
265	Coupling of Acetylide Ligands on an Electron-Rich Tetraruthenium Diphosphido Framework: Synthesis, Structure, and Reactivity Studies of Ru4(CO)9(EPh2)2(C2But)2 and Ru4(CO)8(EPh2)2(C4But2). Organometallics, 1996, 15, 5269-5271	3.8	43	
264	Near infrared-emitting tris-bidentate Os(II) phosphors: control of excited state characteristics and fabrication of OLEDs. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 4910-4920	7.1	42	
263	Chiral fluorous dialkoxy-diamino zirconium complexes: synthesis and use in stereospecific polymerization of 1-hexene. <i>Chemistry - A European Journal</i> , 2007 , 13, 923-35	4.8	42	
262	Efficient iridium(III) based, true-blue emitting phosphorescent OLEDS employing both double emission and double buffer layers. <i>Organic Electronics</i> , 2009 , 10, 1364-1371	3.5	41	
261	Photophysics of heteroleptic iridium(III) complexes of current interest; a closer look on relaxation dynamics. <i>Inorganic Chemistry</i> , 2009 , 48, 6501-8	5.1	41	
260	Reversible alkyne ligand scission: formation and reactivity of Cp2W2Os(CO)5(.muCTol)(.mu.3-CTol). <i>Organometallics</i> , 1985 , 4, 1900-1901	3.8	41	
259	First N-Borylated Emitters Displaying Highly Efficient Thermally Activated Delayed Fluorescence and High-Performance OLEDs. <i>ACS Applied Materials & Empty Interfaces</i> , 2017 , 9, 27090-27101	9.5	40	
258	New series of ruthenium(II) and osmium(II) complexes showing solid-state phosphorescence in far-visible and near-infrared. <i>Inorganic Chemistry</i> , 2010 , 49, 823-32	5.1	40	
257	Polarized phosphorescent organic light-emitting devices adopting mesogenic hostguest systems. Organic Electronics, 2011, 12, 15-21	3.5	40	

256	Room temperature blue phosphorescence: a combined experimental and theoretical study on the bis-tridentate Ir(iii) metal complexes. <i>Dalton Transactions</i> , 2016 , 45, 15364-15373	4.3	39
255	Luminescent Pt(II) complexes bearing dual isoquinolinyl pyrazolates: fundamentals and applications. <i>Dalton Transactions</i> , 2015 , 44, 8552-63	4.3	39
254	Strategic design and synthesis of novel tridentate bipyridine pyrazolate coupled Ru(II) complexes to achieve superior solar conversion efficiency. <i>Journal of Materials Chemistry</i> , 2009 , 19, 5329		39
253	Synthesis and Characterization of Fluorinated Aminoalkoxide and Iminoalkoxide Gallium Complexes: Application in Chemical Vapor Deposition of Ga2O3 Thin Films. <i>Organometallics</i> , 2004 , 23, 95-103	3.8	39
252	Formation and Stabilization of a Decanuclear Cu(II) Wheel Linked by Chloride and O.H-N Hydrogen Bonds We thank the National Science Council of Taiwan, R.O.C. (Grant No. NSC 90-2113-M-007-007) as well as the National Research Council, Canada for providing the financial support <i>Angewandte</i>	16.4	39
251	Chemie - International Edition, 2001, 40, 4651-4653 Fluorinated aminoalkoxide Cull complexes: new CVD precursors for deposition of copper metal. Journal of Materials Chemistry, 2002, 12, 3541-3550		39
250	Coordinatively and Electronically Unsaturated Tetraruthenium Clusters: Reversible Triple CO Addition to Ru4(CO)9(EP.Ph2)[A-Ph2PCC(Ph)CC(Ph)]. <i>Organometallics</i> , 1998 , 17, 2936-2938	3.8	39
249	Functional Pyrimidinyl Pyrazolate Pt(II) Complexes: Role of Nitrogen Atom in Tuning the Solid-State Stacking and Photophysics. <i>Advanced Functional Materials</i> , 2019 , 29, 1900923	15.6	38
248	Deposition of Ru and RuO2 thin films employing dicarbonyl bis-diketonate ruthenium complexes as CVD source reagents. <i>Journal of Materials Chemistry</i> , 2003 , 13, 1999		38
247	Synthesis and Characterization of Allyl(Eketoiminato) palladium(II) Complexes: New Precursors for Chemical Vapor Deposition of Palladium Thin Films. <i>Organometallics</i> , 1999 , 18, 864-869	3.8	38
246	Phosphorescent PtAu2 Complexes with Differently Positioned Carbazole-Acetylide Ligands for Solution-Processed Organic Light-Emitting Diodes with External Quantum Efficiencies of over 20. <i>ACS Applied Materials & Diodes</i> , 2016, 8, 20251-7	9.5	37
245	Phosphorescent Ir(III) complexes with both cyclometalate chromophores and phosphine-silanolate ancillary: concurrent conversion of organosilane to silanolate. <i>Dalton Transactions</i> , 2013 , 42, 7111-9	4.3	37
244	High Open-Circuit Voltages: Evidence for a Sensitizer-Induced TiO2 Conduction Band Shift in Ru(II)-Dye Sensitized Solar Cells. <i>Chemistry of Materials</i> , 2013 , 25, 4497-4502	9.6	37
243	N-heterocyclic carbene Pt(II) complexes from caffeine: synthesis, structures and photoluminescent properties. <i>Dalton Transactions</i> , 2011 , 40, 4402-6	4.3	37
242	Highly efficient white-electrophosphorescent devices based on polyfluorene copolymers containing charge-transporting pendent units. <i>Journal of Materials Chemistry</i> , 2007 , 17, 167-173		37
241	Spiro-configured bipolar host materials for highly efficient electrophosphorescent devices. <i>Chemistry - an Asian Journal</i> , 2012 , 7, 133-42	4.5	36
240	Fluorinated aminoalkoxide and ketoiminate indium complexes as MOCVD precursors for In2O3 thin film deposition. <i>Inorganic Chemistry</i> , 2003 , 42, 6041-9	5.1	36
239	Unprecedented Homoleptic Bis-Tridentate Iridium(III) Phosphors: Facile, Scaled-Up Production, and Superior Chemical Stability. <i>Advanced Functional Materials</i> , 2017 , 27, 1702856	15.6	36

238	Blue-emitting heteroleptic Ir(III) phosphors with functional 2,3'-bipyridine or 2-(pyrimidin-5-yl)pyridine cyclometalates. <i>Dalton Transactions</i> , 2015 , 44, 14613-24	4.3	35	
237	Triboluminescence and Metal Phosphor for Organic Light-Emitting Diodes: Functional Pt(II) Complexes with Both 2-Pyridylimidazol-2-ylidene and Bipyrazolate Chelates. <i>ACS Applied Materials & Materials amp; Interfaces</i> , 2016 , 8, 33888-33898	9.5	35	
236	Growth of IrO2 Films and Nanorods by Means of CVD: An Example of Compositional and Morphological Control of Nanostructures. <i>Chemical Vapor Deposition</i> , 2003 , 9, 301-305		35	
235	Synthesis and characterization of fluorinated Eketoiminate and imino-alcoholate Pd complexes: precursors for palladium chemical vapor deposition. <i>Journal of Materials Chemistry</i> , 2003 , 13, 135-142		35	
234	Polyfluorene containing diphenylquinoline pendants and their applications in organic light emitting diodes. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 859-869	2.5	35	
233	Modulation of Solid-State Aggregation of Square-Planar Pt(II) Based Emitters: Enabling Highly Efficient Deep-Red/Near Infrared Electroluminescence. <i>Advanced Functional Materials</i> , 2020 , 30, 20024	9 ^{45.6}	33	
232	Mechanistic Investigation of Improved Syntheses of Iridium(III)-Based OLED Phosphors. Organometallics, 2012 , 31, 4349-4355	3.8	33	
231	Ruthenium(II) Sensitizers with Heteroleptic Tridentate Chelates for Dye-Sensitized Solar Cells. <i>Angewandte Chemie</i> , 2011 , 123, 2102-2106	3.6	33	
230	High-efficiency and solution processible multilayer white polymer light-emitting diodes using neutral conjugated surfactant as an electron injection layer. <i>Applied Physics Letters</i> , 2008 , 92, 063303	3.4	33	
229	New CVD precursors capable of depositing copper metal under mixed O2/Ar atmosphere. <i>Inorganic Chemistry</i> , 2005 , 44, 7226-33	5.1	33	
228	Deposition of Silver Thin Films Using the Pyrazolate Complex [Ag(3,5-(CF3)2C3HN2)]3. <i>Chemical Vapor Deposition</i> , 2005 , 11, 206-212		33	
227	Boosting Efficiency of Near-Infrared Organic Light-Emitting Diodes with Os(II)-Based Pyrazinyl Azolate Emitters. <i>Advanced Functional Materials</i> , 2020 , 30, 1906738	15.6	33	
226	Isomeric spiro-[acridine-9,9?-fluorene]-2,6-dipyridylpyrimidine based TADF emitters: insights into photophysical behaviors and OLED performances. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 10088-1010	0g.1	33	
225	Os(II) metal phosphors bearing tridentate 2,6-di(pyrazol-3-yl)pyridine chelate: synthetic design, characterization and application in OLED fabrication. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 6269	7.1	32	
224	Luminescent homodinuclear copper(I) halide complexes based on the 3,5-bis{6-(2,2?-dipyridyl)}pyrazole ligand. <i>Inorganic Chemistry Communication</i> , 2010 , 13, 1057-1060	3.1	32	
223	Luminescent osmium(II) complexes with functionalized 2-phenylpyridine chelating ligands: preparation, structural analyses, and photophysical properties. <i>Inorganic Chemistry</i> , 2008 , 47, 3307-17	5.1	32	
222	Preparation and characterization of volatile alkaline-earth metal complexes with multiply coordinated aminoalkoxide ligands. <i>Dalton Transactions RSC</i> , 2001 , 2462-2466		32	
221	Polycarbon Ligand Complexes: Synthesis, Molecular Structures, and Selected EHMO Studies of Ru4, Ru5, and Ru6 Clusters with Carbon Ligands Derived from Phosphinodiynes. <i>Organometallics</i> , 1998 , 17, 2447-2458	3.8	32	

220	Ir(III)-Based Phosphors with Bipyrazolate Ancillaries; Rational Design, Photophysics, and Applications in Organic Light-Emitting Diodes. <i>Inorganic Chemistry</i> , 2015 , 54, 10811-21	5.1	31
219	Iridium(III) Complexes of a Dicyclometalated Phosphite Tripod Ligand: Strategy to Achieve Blue Phosphorescence Without Fluorine Substituents and Fabrication of OLEDs. <i>Angewandte Chemie</i> , 2011 , 123, 3240-3244	3.6	31
218	Syntheses, photophysics, and application of iridium(III) phosphorescent emitters for highly efficient, long-life organic light-emitting diodes. <i>Chemistry - an Asian Journal</i> , 2009 , 4, 742-53	4.5	31
217	Iridium Metal Thin Films and Patterned IrO2 Nanowires Deposited Using Iridium(I) Carbonyl Precursors. <i>Chemical Vapor Deposition</i> , 2006 , 12, 442-447		31
216	Transition Metal Carbonyl Compounds. <i>Inorganic Syntheses</i> , 2004 , 96-132		31
215	Interplay between intra- and interligand charge transfer with variation of the axial N-heterocyclic ligand in osmium(II) pyridylpyrazolate complexes: extensive color tuning by phosphorescent solvatochromism. <i>Chemistry - A European Journal</i> , 2005 , 11, 6347-57	4.8	31
214	Os(II) phosphors with near-infrared emission induced by ligand-to-ligand charge transfer transition. <i>Inorganic Chemistry</i> , 2014 , 53, 9366-74	5.1	30
213	Rotation of coordinated acetylide ligands on the triangular surface of trinuclear heterometallic clusters. <i>Organometallics</i> , 1990 , 9, 2709-2718	3.8	30
212	Phenyl- and Pyrazolyl-Functionalized Pyrimidine: Versatile Chromophore of Bis-Tridentate Ir(III) Phosphors for Organic Light-Emitting Diodes. <i>Chemistry of Materials</i> , 2019 , 31, 6453-6464	9.6	29
211	Luminescent Pt(II) complexes featuring imidazolylidenepyridylidene and dianionic bipyrazolate: from fundamentals to OLED fabrications. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 1420-1435	7.1	28
210	Efficient Pt(II) emitters assembled from neutral bipyridine and dianionic bipyrazolate: designs, photophysical characterization and the fabrication of non-doped OLEDs. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 10837-10847	7.1	28
209	Structural tuning intra- versus inter-molecular proton transfer reaction in the excited state. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 9006-15	3.6	27
208	An electron-transporting host material compatible with diverse triplet emitters used for highly efficient red- and green-electrophosphorescent devices. <i>Chemical Communications</i> , 2008 , 4956-8	5.8	27
207	Pt(II) complexes with 6-(5-trifluoromethyl-pyrazol-3-yl)-2,2'-bipyridine terdentate chelating ligands: synthesis, characterization, and luminescent properties. <i>Chemistry - an Asian Journal</i> , 2008 , 3, 2112-23	4.5	27
206	Characterization of the Oxo-Alkylidyne Complex CpWOs3(CO)10(.muO)(.mu.3-CCH2Tol) Resulting from Acyl Ligand C-O Bond Scission. Interconversion of Alkylidyne, Alkylidene, Vinylidene, and Alkyne Ligand Moieties in a Single Heterometallic Cluster System. <i>Organometallics</i> , 1994 , 13, 813-821	3.8	27
205	Reversible Scission of Coordinated Acetylide Ligand: Characterization and Reactivity Studies of WRu4 and WRu5 Carbide-Alkylidyne Clusters. <i>Journal of the American Chemical Society</i> , 1994 , 116, 1118	31 ⁻ 941	8 2 7
204	Pyridyl Pyrrolide Boron Complexes: The Facile Generation of Thermally Activated Delayed Fluorescence and Preparation of Organic Light-Emitting Diodes. <i>Angewandte Chemie</i> , 2016 , 128, 3069-	3873	26
203	Pt(II) Phosphors Featuring Both Dicarbene and Functional Biazolate Chelates: Synthesis, Luminescent Properties, and Applications in Organic Light-Emitting Diodes. <i>Inorganic Chemistry</i> , 2016 , 55, 6394-404	5.1	26

(2008-2013)

202	Thiocyanate-Free Ru(II) Sensitizers with a 4,4?-Dicarboxyvinyl-2,2?-bipyridine Anchor for Dye-Sensitized Solar Cells. <i>Advanced Functional Materials</i> , 2013 , 23, 2285-2294	15.6	26	
201	Ru(II) sensitizers bearing dianionic biazolate ancillaries: ligand synergy for high performance dye sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 7681	13	26	
200	Deposition of osmium thin films using pyrazolate complexes as CVD source reagents. <i>Journal of Materials Chemistry</i> , 2002 , 12, 1363-1369		26	
199	Generation of Oxolarbide Clusters from Direct Scission of a Coordinated Carbonyl Ligand: Molecular Structures of Cp2W2Ru3(CO)13 and Cp*W(O)Cp*WRu3(E-C)(CO)11. <i>Journal of the American Chemical Society</i> , 1996 , 118, 3289-3290	16.4	26	
198	Luminescent Diiridium Complexes with Bridging Pyrazolates: Characterization and Fabrication of OLEDs Using Vacuum Thermal Deposition. <i>Advanced Optical Materials</i> , 2018 , 6, 1800083	8.1	25	
197	Using a double-doping strategy to prepare a bilayer device architecture for high-efficiency red PhOLEDs. <i>Journal of Materials Chemistry</i> , 2011 , 21, 1846-1851		25	
196	Iridium(I) pyridyl azolate complexes with saturated red metal-to-ligand charge transfer phosphorescence; fundamental and potential applications in organic light-emitting diodes. <i>Chemistry - A European Journal</i> , 2007 , 13, 2686-94	4.8	25	
195	Osmium complexes with tridentate 6-pyrazol-3-yl 2,2'-bipyridine ligands: coarse tuning of phosphorescence from the red to the near-infrared region. <i>Chemistry - an Asian Journal</i> , 2007 , 2, 155-63	₃ 4·5	25	
194	Scission of a coordinated acetylide ligand on the tungsten-triosmium framework. Synthesis, crystal structure, and reactivity studies of CpWOs3(CO)11(C.tplbond.CR) (R = Ph and nBu). <i>Organometallics</i> , 1989 , 8, 1574-1576	3.8	25	
193	Highly Efficient Near-Infrared Electroluminescence up to 800 nm Using Platinum(II) Phosphors. <i>Advanced Functional Materials</i> , 2020 , 30, 2002173	15.6	24	
192	Realization of Highly Efficient Red Phosphorescence from Bis-Tridentate Iridium(III) Phosphors. <i>Inorganic Chemistry</i> , 2019 , 58, 10944-10954	5.1	24	
191	Sky Blue-Emitting Iridium(III) Complexes Bearing Nonplanar Tetradentate Chromophore and Bidentate Ancillary. <i>Inorganic Chemistry</i> , 2017 , 56, 10054-10060	5.1	24	
190	Emissive iridium(III) diimine complexes formed by double cyclometalation of coordinated triphenylphosphite. <i>Inorganic Chemistry</i> , 2011 , 50, 5075-84	5.1	24	
189	Tris(thiocyanate) Ruthenium(II) Sensitizers with Functionalized Dicarboxyterpyridine for Dye-Sensitized Solar Cells. <i>Angewandte Chemie</i> , 2011 , 123, 8420-8424	3.6	24	
188	15N NMR relaxation studies of free and ligand-bound human acidic fibroblast growth factor. Journal of Biological Chemistry, 2000 , 275, 39444-50	5.4	24	
187	Syntheses of new ruthenium clusters containing sulfur, ynyl and diynyl ligands. Crystal structures of [Ru3(CO)9(HP-SCCSiMe3)(B-IP-CCSiMe3)], [Ru4(CO)12(A-S)(HP-CCSiMe3)2] and [Ru4(CO)9(HCO)2(A-S)(A-IP-C(SiMe3)C(CCSiMe3)]. <i>Dalton Transactions RSC</i> , 2001 , 2502-2507		24	
186	Synthesis, crystal structure, and stereoisomerism of the alkylidene complex (.eta.5-C5H5)WOs3(CO)9(.muO)(.muCl)(.muCHCH2C6H4Me-4) and related complexes. Organometallics, 1987, 6, 301-307	3.8	24	
185	Synthesis, Characterization, and Photophysical Properties of Luminescent Gallium and Indium Complexes Constructed using Tridentate 6-Azolyl-2,2?-bipyridine Chelates. <i>Organometallics</i> , 2008 , 27, 80-87	3.8	23	

184	High-efficiency red electrophosphorescent devices based on new osmium(II) complexes. <i>Synthetic Metals</i> , 2005 , 155, 56-62	3.6	23
183	Synthesis and characterization of luminescent osmium(II) carbonyl complexes based on chelating dibenzoylmethanate and halide ligands. <i>Chemical Communications</i> , 2003 , 3046-7	5.8	23
182	Organometallic Ruthenium Source Reagents for CVD. Chemical Vapor Deposition, 2001, 7, 99-101		23
181	4,4',5,5'-Tetracarboxy-2,2'-bipyridine Ru(II) sensitizers for dye-sensitized solar cells. <i>Inorganic Chemistry</i> , 2014 , 53, 8593-9	5.1	22
180	Spiro-Phenylpyrazole/Fluorene as Hole-Transporting Material for Perovskite Solar Cells. <i>Scientific Reports</i> , 2017 , 7, 7859	4.9	22
179	Plant Growth Absorption Spectrum Mimicking Light Sources. <i>Materials</i> , 2015 , 8, 5265-5275	3.5	22
178	Origins of device performance in dicarboxyterpyridine Ru(II) dye-sensitized solar cells. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 14190-5	3.6	22
177	Early High Oxidation Statellate Low Oxidation State Mixed-Metal Organometallics: Examples of Oxo-Bridged Tungsten R uthenium Acetylide Clusters. <i>Organometallics</i> , 1997 , 16, 519-521	3.8	22
176	Reactions of the (2-pyridyl) pyrrolide platinum(II) complex driven by sterically encumbered chelation: a model for the reversible attack of alcohol at the coordinated carbon monoxide. <i>Inorganic Chemistry</i> , 2008 , 47, 5154-61	5.1	22
175	Polyfluorene presenting dipolar pendent groups and its application to electroluminescent devices. Journal of Polymer Science Part A, 2007, 45, 2073-2084	2.5	22
174	Synthesis and characterization of two novel tetranuclear sodium ketoiminate complexes; structural evidence for formation of dative Na?F and Nat (olefin) bonding interactions. <i>Dalton Transactions RSC</i> , 2000 , 343-347		22
173	Synthesis of the tetranuclear mixed-metal carbido clusters [WRu3L(CO)11([J4-C)([J-H)]via methoxymethylidyne clusters [WRu3L(CO)11([J3-COMe)](L = (JC5H5 or (JC5Me5). Crystal structures of [WRu3((JC5Me5)(CO)11([J3-COMe)]) and [WRu3((JC5H5)(CO)11([J4-C)([J-H)]. Journal of the		22
172	A universal, easy-to-apply light-quality index based on natural light spectrum resemblance. <i>Applied Physics Letters</i> , 2014 , 104, 203304	3.4	21
171	Probing Triplet State Properties of Organic Chromophores via Design and Synthesis of Os(II)-Diketonate Complexes: The Triplet State Intramolecular Charge Transfer. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 19908-19911	3.4	21
170	Fluxional behavior of the .sigma.,.pivinyl complexes Os2[.muCH:C(H)Ph](.muBr)(CO)6-n(PPh3)n (n = 1, 2): use of 13C[1H] NOE and 187Os-13C couplings in assignment of carbonyls. Organometallics, 1993, 12, 1616-1622	3.8	21
169	Rotation of the acetylide ligand on the triangular face of tungsten-diruthenium clusters. Crystal structure and solution dynamics of LWM2(CO)8(CCPh), $L = C5H5$, $C5Me5$ and $M = Os$, Ru . <i>Polyhedron</i> , 1989 , 8, 2003-2006	2.7	21
168	Bis-tridentate Ir Phosphors Bearing Two Fused Five-Six-Membered Metallacycles: A Strategy to Improved Photostability of Blue Emitters. <i>Chemistry - A European Journal</i> , 2019 , 25, 15375-15386	4.8	20
167	Structural tuning of ancillary chelate in tri-carboxyterpyridine Ru(II) sensitizers for dye sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 5418-5426	13	20

166	Platinum(II) complexes with spatially encumbered chelates; syntheses, structure and photophysics. <i>Inorganica Chimica Acta</i> , 2009 , 362, 4734-4739	2.7	20
165	Synthesis and characterization of the heterometallic phosphinidene clusters (C5Me5)WRu3(CO)10(.mu.3-H)(.mu.3-PPh), (C5H5)WRu2(CO)8(.muH)(.mu.3-PPh), and (C5Me5)WRu2(CO)8(.muH)(.mu.3-PPh). <i>Inorganic Chemistry</i> , 1992 , 31, 3818-3824	5.1	20
164	Ligand substitution reactions in metal cluster complexes. Evidence for unusually facile metal-metal bond cleavages in the reactions of osmium clusters Os3(CO)11(NCMe) and Os3(CO)10(NCMe)2 with CNCF3 including the isolation and structural characterization of intermediates. <i>Journal of the</i>	16.4	20
163	Studies of the synthesis, structure, and reactivity of a tetranuclear mixed-metal imido cluster, (LB-C5H5)WRu3(CO)9(LP-NPh)(CCPh). <i>Journal of the Chemical Society Chemical Communications</i> , 1989, 1540-1543		20
162	Roles of Ancillary Chelates and Overall Charges of Bis-tridentate Ir(III) Phosphors for OLED Applications. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 1084-1093	9.5	20
161	Dye sensitized solar cells with cobalt and iodine-based electrolyte: the role of thiocyanate-free ruthenium sensitizers. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 19556-19565	13	19
160	Reversible CI Bond Cleavage and Interconversion of the Resulting Hydrocarbyl Ligands on Butterfly Frameworks Derived from Acetylide Complexes Cp*WOs3(A-CCR)(CO)11 (R = Ph, nBu, CH2OMe, CH2OPh). Organometallics, 1997, 16, 1702-1713	3.8	19
159	Deposition of Iridium Thin Films Using New Irl CVD Precursors. <i>Chemical Vapor Deposition</i> , 2002 , 8, 17		19
158	Preparation and characterization of RuO2 thin films from Ru(CO)2(tmhd)2 by metalorganic chemical vapor deposition. <i>Thin Solid Films</i> , 2002 , 413, 85-91	2.2	19
157	Alkaline-earth metal fluoroalkoxide complexes with multi-coordinated polyether appendage: synthesis and characterization. <i>Inorganica Chimica Acta</i> , 2002 , 334, 172-182	2.7	19
156	Deposition of Conductive Ru and RuO2 Thin Films Employing a Pyrazolate Complex [Ru(CO)3(3,5-(CF3)2-pz)]2 as the CVD Source Reagent. <i>Chemical Vapor Deposition</i> , 2003 , 9, 162-169		19
155	Thermodynamic characterization of the human acidic fibroblast growth factor: evidence for cold denaturation. <i>Biochemistry</i> , 2001 , 40, 7746-53	3.2	19
154	Reactions of Acetylide Clusters Cp*WRe2(CO)9(CCR) [R = Ph, C(Me):CH2, and Cyclohexenyl] with Thiophenol. Formation of WRe2 Thiolate Alkyne and Vinylalkylidyne Derivatives. <i>Organometallics</i> , 1995 , 14, 626-633	3.8	19
153	Reaction of Heterotrinuclear Vinylacetylide Complexes Cp*WRe2(CO)9(C.tplbond.CR) with Alcohol and Dihydrogen. Formation of WRe2 Allenylidene and Metallacyclopentadienyl Derivatives. <i>Organometallics</i> , 1994 , 13, 2365-2374	3.8	19
152	Intermetal Oxo Transfer: Isomerization of Tungsten-Rhenium Carbonyl Complexes Containing Oxo and Acetylide Ligands. <i>Organometallics</i> , 1994 , 13, 4652-4654	3.8	19
151	Reaction of polynuclear acetylide clusters. Mixed-metal complexes derived from reactions of CpWOs3(CO)11(C.tplbond.CR) (R = Ph, nBu) with disubstituted alkynes. <i>Organometallics</i> , 1990 , 9, 2305	-2 3 382	19
150	Synthesis and crystal structure of a dioxo heterometallic complex CpWOs3(CO)9(\(\bar{\pu}\)-O)2(\(\bar{\pu}\)-H)(Cp =\(\bar{\pu}\)C5H5). Journal of the Chemical Society Chemical Communications, 1988 , 1456-1457		19
149	Structural studies on polynuclear osmium carbonyl hydrides. 33. Formation of tungsten-triosmium clusters. Crystal structure and reactivity of (.eta.5-C5H5)WOs3(CO)12(.mu.3-CC6H4CH3)(.muH)2. <i>Inorganic Chemistry</i> , 1986 , 25, 4165-4170	5.1	19

148	Near-Infrared Emission Induced by Shortened Pt-Pt Contact: Diplatinum(II) Complexes with Pyridyl Pyrimidinato Cyclometalates. <i>Inorganic Chemistry</i> , 2019 , 58, 13892-13901	18
147	Molecularly Engineered Ru(II) Sensitizers Compatible with Cobalt(II/III) Redox Mediators for Dye-Sensitized Solar Cells. <i>Inorganic Chemistry</i> , 2016 , 55, 7388-95	18
146	Engineering of Ru(II) dyes for interfacial and light-harvesting optimization. <i>Dalton Transactions</i> , 2014 , 43, 2726-32	18
145	Thiocyanate-free ruthenium(II) sensitizers for dye-sensitized solar cells based on the cobalt redox couple. <i>ChemSusChem</i> , 2014 , 7, 2930-8	18
144	Synthesis and Characterization of Ruthenium Complexes with Two Fluorinated Amino Alkoxide Chelates. The Quest To Design Suitable MOCVD Source Reagents. <i>Chemistry of Materials</i> , 2003 , 15, 2454 246	52 ¹⁸
143	Heterometallic carbonyl cluster oxide. Formation, structure and reactivity of WRe2 oxo-acetylide cluster compounds. <i>Journal of the Chemical Society Chemical Communications</i> , 1994 , 1839	18
142	Facile interconversion of terminal, doubly bridging, and quadruply bridging carbonyl ligands in solution: crystal structure and solution dynamics of the complexes LWRu3(CO)12H, L = C5H5 and C5Me5. <i>Journal of the Chemical Society Chemical Communications</i> , 1989 , 873	18
141	Single-emission-layer white organic light-emitting devices: Chromaticity and colour-rendering consideration. <i>Organic Electronics</i> , 2014 , 15, 517-523	17
140	Skeletal Rearrangement and Acetylide Migration in the Butterfly Cluster Complexes with Formula CpWOs3(CO)11(C.tplbond.CCH2OMe). <i>Organometallics</i> , 1995 , 14, 4844-4849	17
139	Isomerization Involving a Quadruply Bridging Carbonyl Ligand: Dynamics and Crystal Structure of (C5Me5)MoRu3(CO)12H. <i>Organometallics</i> , 1994 , 13, 4167-4169	17
138	Synthesis and crystal structure of a pentanuclear heterometallic acetylide complex Cp2Mo2Ru3(CO)10(C?CPh)2. <i>Journal of Organometallic Chemistry</i> , 1990 , 389, c7-c11	17
137	Metal acetylide CpW(CO)3C.tplbond.CPh and hydride CpW(CO)3H complexes as building blocks to prepare tungsten-ruthenium heterometallic clusters. Synthesis, characterization, and crystal 3.8 structure of CpWRu3(CO)9(.mu.3-COMe)(C:CHPh), Cp2W2Ru3(CO)9[CC(Ph)C(OMe)](C:CHPh), and	17
136	Methoxy substituents activated carbazole-based boron dimesityl TADF emitters. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 4780-4788	16
135	Analyzing nanostructures in mesogenic host@uest systems for polarized phosphorescence. Organic Electronics, 2014 , 15, 311-321 3.5	16
134	Design of Os(II) -based sensitizers for dye-sensitized solar cells: influence of heterocyclic ancillaries. <i>ChemSusChem</i> , 2013 , 6, 1366-75	16
133	Oxo Ligand Reactivity and Bonding in the Dinuclear WRe OxoAcetylide Complex (IB-C5Me5)W(O)Re(CO)4(EH)(CCPh). <i>Inorganic Chemistry</i> , 1996 , 35, 6015-6020	16
132	High-nuclearity phosphinidene clusters. Synthesis, characterization, and reactivity of two W2Ru4 clusters with a .mu.4eta.2-CO ligand. <i>Organometallics</i> , 1993 , 12, 4061-4066	16
131	Opening of metal carbonyl cluster complexes by ligand addition. Synthesis and structural characterization of osmium cluster Os3(CO)11(.muCNCF3)2, a stabilized derivative of the hypothetical complex Os3(CO)13. <i>Journal of the American Chemical Society</i> , 1992 , 114, 1909-1910	16

130	Synthesis and structure of heterometallic cluster complexes. Reaction of imido complex LWRu2(CO)8(EH)(EI-NPh), L = CP and Cp?, with the tungsten acetylide complex CpW(CO)3C?CPh. Journal of Organometallic Chemistry, 1990, 390, c50-c56	2.3	16	
129	Crystal and molecular structure of (1,1,4,4-tetrafluoro-2-tert-butyl-1,4-disilabut-2-ene)molybdenum(II) pentacarbonyl. <i>Inorganic Chemistry</i> , 1981 , 20, 199-204	5.1	16	
128	Iridium(III) Complexes Bearing Tridentate Chromophoric Chelate: Phosphorescence Fine-Tuned by Phosphine and Hydride Ancillary. <i>Inorganic Chemistry</i> , 2018 , 57, 8287-8298	5.1	16	
127	Versatile Pt(II) Pyrazolate Complexes: Emission Tuning via Interplay of Chelate Designs and Stacking Assemblies. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 16679-16690	9.5	15	
126	Competitive Acetylide CII Bond Scission vs Formation of a Quadruply Bridging Carbonyl Ligand. X-ray Crystal Structures of the Two Pentanuclear Clusters Cp*3W3Ru2(A-C)(B-CPh)(CO)9 and Cp*3W3Ru2(B-CCBut)(CO)9. Organometallics, 1997, 16, 1870-1874	3.8	15	
125	Synthesis, Characterization, and Reactivity Study of Triosmium Acetylide Cluster Complexes Bearing a (C5Me5)W(O)2 Fragment. <i>Organometallics</i> , 1997 , 16, 5368-5371	3.8	15	
124	Simple and effective synthesis of pentamethylcyclopentadienyl oxo-peroxo and dioxo tungsten acetylide complexes. <i>Journal of Organometallic Chemistry</i> , 1997 , 545-546, 151-156	2.3	15	
123	Phosphorescence of red Os(fptz)2(PPh2Me)2 doped organic light-emitting devices with n and p hosts. <i>Applied Physics Letters</i> , 2006 , 88, 063508	3.4	15	
122	Synthesis and Characterization of Tris(Eketoiminato)ruthenium(III) Complexes: Potential Precursors for CVD of Ru and RuO2 Thin Films. <i>Chemical Vapor Deposition</i> , 2004 , 10, 149-158		15	
121	Rearrangement of acetylide and vinylidene ligands on the coordination spheres of cluster complexes. Reaction of the trinuclear acetylide cluster CpWOs2(CO)8(C.tplbond.CPh) with mononuclear metal hydride complexes LW(CO)3H (L = Cp, Cp*). <i>Organometallics</i> , 1991 , 10, 1676-1682	3.8	15	
120	Ratiometric Tuning of Luminescence: Interplay between the Locally Excited and Interligand Charge-Transfer States in Pyrazolate-Based Boron Compounds. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 4022-4028	3.8	14	
119	Formation and Stabilization of a Decanuclear Cull Wheel Linked by Chloride and O???HN Hydrogen Bonds. <i>Angewandte Chemie</i> , 2001 , 113, 4787-4789	3.6	14	
118	New CVD Source Reagents for Osmium Thin Film Deposition. <i>Chemical Vapor Deposition</i> , 2001 , 7, 245-24	48	14	
117	Synthesis and Characterization of Tetraosmium Carbonyl Complexes Containing a Bridging CO2 Ligand. <i>Journal of Cluster Science</i> , 2001 , 12, 421-432	3	14	
116	Syntheses and characterization of mixed acetylacetonateBatecholate complexes of zirconium, [Zr3(acac)4(cat)4(MeOH)2], [Zr(acac)2(DBcat)]2 (H2DBcat = 3,5-di-tert-butylcatechol) and [Zr4(A-O)(acac)4(DBcat)3(OMe)4(MeOH)]. Dalton Transactions RSC, 2000, 2923-2927		14	
115	AlkyneAcetylide Coupling in Cluster Compounds Bearing a Triosmium Carbonyl Os3(CO)8 Fragment and a High Oxidation State (C5Me5)W(O)2 Unit. <i>Organometallics</i> , 1998 , 17, 2970-2976	3.8	14	
114	Synthesis and Characterization of a (Ketenyl)metal Cluster Complex, an Intermediate in the Oxidative Decarbonation of an Acetylide Ligand. <i>Organometallics</i> , 1995 , 14, 2164-2166	3.8	14	
113	Reversible C-C Bond Scission and C-H Bond Activation in the Butterfly Acetylide Clusters Cp*WOs3(CO)11(CCR) (R = Ph, Bu, CH2OMe). <i>Organometallics</i> , 1995 , 14, 5483-5485	3.8	14	

112	Synthesis of Unsaturated Os3W2 and Metastable Os4W Oxo-Ethylidyne Clusters by Solid-State Pyrolysis. Direct C-O Bond Cleavage of a Coordinated Ketenyl Ligand. <i>Organometallics</i> , 1994 , 13, 1720-17	328 727	14
111	Clusters containing ynamine ligands. 5. Coordination and transformations of an ynamine ligand in a dimanganese complex. Synthesis and structural characterization of Mn2(CO)8[.muMeC2NEt2], Mn2(CO)8[.muH2CCC(H)NEt2], Mn2(CO)8[.mueta.2-C3H3NEt2], and	3.8	14
110	Synthesis and characterization of tetranuclear mixed-metal hydride complexes, LWM3(CO)11(EH)3, L = C5H5, C5Me5 and M = Ru, OS. <i>Journal of Organometallic Chemistry</i> , 1989 , 378, 45-56	2.3	14
109	Iridium(III) Complexes Bearing a Formal Tetradentate Coordination Chelate: Structural Properties and Phosphorescence Fine-Tuned by Ancillaries. <i>Inorganic Chemistry</i> , 2020 , 59, 523-532	5.1	14
108	Blue-emitting bis-tridentate Ir(III) phosphors: OLED performances vs. substituent effects. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 10486-10496	7.1	14
107	Pt(II) Complexes with Azolate-containing Bidentate Chelate: Design, Photophysics, and Application. <i>Journal of the Chinese Chemical Society</i> , 2017 , 64, 574-588	1.5	13
106	General application of blade coating to small-molecule hosts for organic light-emitting diode. <i>Synthetic Metals</i> , 2014 , 196, 99-109	3.6	13
105	Stepwise formation of iridium(III) complexes with monocyclometalating and dicyclometalating phosphorus chelates. <i>Inorganic Chemistry</i> , 2012 , 51, 1785-95	5.1	13
104	from Ru5(E-C)(CO)15. Reactivity Studies of Carbido Clusters Bearing Acetylide Ligands.	3.8	13
103	Organometallics, 1997, 16, 3523-3530 Self-Reducible Cull Source Reagents for the CVD of Copper. <i>Chemical Vapor Deposition</i> , 2001, 7, 28-31		13
102	Clusters Containing a Quadruply Bridging CO Ligand. Syntheses, Crystal Structures, and Solution Dynamics of CpWRu4(CO)14H and CpMRu4(CO)14H (M = Mo, W). <i>Organometallics</i> , 1995 , 14, 4286-4293	3.8	13
101	Preparation of PtRu Alloyed Thin Films Using a Single-Source CVD Precursor. <i>Chemical Vapor Deposition</i> , 2003 , 9, 157-161		12
100	Photochemical preparation of transition-metal carbonyl compounds with 1,1,2,2-tetrafluoro-1,2-disilacyclobutenes as ligands. <i>Inorganic Chemistry</i> , 1981 , 20, 3456-3460	5.1	12
99	Rational Tuning of Bis-Tridentate Ir(III) Phosphors to Deep-Blue with High Efficiency and Sub-microsecond Lifetime. <i>ACS Applied Materials & Sub-microsecond Lifetime</i> . <i>ACS Applied Materials & Sub-microsecond Lifetime</i> .	9.5	12
98	Emissive Iridium(III) Complexes with Phosphorous-Containing Ancillary. Chemical Record, 2019, 19, 1644-	1.6 66	11
97	Engineering of Osmium(II)-Based Light Absorbers for Dye-Sensitized Solar Cells. <i>Angewandte Chemie</i> , 2012 , 124, 5740-5744	3.6	11
96	Interface and thickness tuning for blade coated small-molecule organic light-emitting diodes with high power efficiency. <i>Journal of Applied Physics</i> , 2013 , 114, 123101	2.5	11
95	Electrochemiluminescence studies of phosphine chelated osmium(II) complexes. <i>Inorganic Chemistry Communication</i> , 2009 , 12, 378-381	3.1	11

94	Reactivity of the Tetrametallic Carbido Cluster (C5Me5)WOs3(A-C)(EH)(CO)11 with Alkyne: Isomerization of an Allyl Fragment on a Tetrametallic Cluster Framework and Ring-Methyl Activation in the C5Me5 Ligand. <i>Organometallics</i> , 1998 , 17, 2207-2214	3.8	11
93	Synthesis and Characterization of the WDs Heterometallic Complex Os3(CO)10(EH)(EB-C(CHPh)C?CW(O)2(C5Me5)): Evidence of Hydride Dislocation on a Triosmium Framework by Crystal Polymorphism. <i>Organometallics</i> , 1999 , 18, 1675-1679	3.8	11
92	Synthesis of Os3W alkylidyne and alkylidene clusters by solid-state pyrolysis; direct CD bond cleavage of co-ordinated ketenyl ligand. <i>Journal of the Chemical Society Dalton Transactions</i> , 1993 , 1829-	-1834	11
91	Unprecedented examples of imido-ligand-assisted alkenyl migration and dissociative intermetallic phosphine migration. <i>Organometallics</i> , 1992 , 11, 1763-1766	3.8	11
90	Synthesis of tetranuclear heterometallic cluster complexes via condensation of triosmium alkyne complexes OS3(CO)10(C2R2), R = Tol and Me, and mononuclear tungsten acetylide complexes LW(CO)3)C?CR?, L? Cp and Cp?, R?= Ph and tBu. <i>Journal of Organometallic Chemistry</i> , 1992 , 439, 347-369	2.3	11
89	Reactions of the mixed-metal clusters prepared from tungsten acetylide complexes; X-ray structural analyses of two novel butterfly clusters with 60 valence electrons. <i>Journal of the Chemical Society Chemical Communications</i> , 1991 , 1019		11
88	Near-Infrared Thermally Activated Delayed Fluorescence Nanoparticle: A Metal-Free Photosensitizer for Two-Photon-Activated Photodynamic Therapy at the Cell and Small Animal Levels <i>Small</i> , 2022 , e2106215	11	11
87	Role of the Diphosphine Chelate in Emissive, Charge-Neutral Iridium(III) Complexes. <i>Chemistry - A European Journal</i> , 2018 , 24, 624-635	4.8	10
86	Geometrical isomerism of Ru(II) dye-sensitized solar cell sensitizers and effects on photophysical properties and device performances. <i>ChemPhysChem</i> , 2014 , 15, 1207-15	3.2	10
85	Bis-tridentate Ru(II) sensitizers with a spatially encumbered 2,6-dipyrazolylpyridine ancillary ligand for dye-sensitized solar cells. <i>RSC Advances</i> , 2017 , 7, 42013-42023	3.7	10
84	Initial growth of chemical-vapor-deposited Ru from bis(hexafluoroacetylacetonate)dicarbonyl ruthenium. <i>Thin Solid Films</i> , 2005 , 483, 31-37	2.2	10
83	Unsupported Metal Chain Complex: Synthesis, Characterization, and EHMO Study Involving the Tetraosmium Complex [Os2(CO)5(thd)2]2. <i>Organometallics</i> , 2000 , 19, 5400-5403	3.8	10
82	Novel butterfly tungsten-osmium carbido cluster Complexes from the reaction of Os3(CO)10(NCME)2 CPW(CO)3(CH2SMe). <i>Journal of Cluster Science</i> , 1995 , 6, 289-309	3	10
81	A heteronuclear vinylacetylide cluster as a precursor to allenylidene and metallacyclopentadienyl cluster compounds. X-ray structures of Cp*WRe2(CO)8(.muOMe)(C:C:CMe2) and Cp*WRe2(CO)7(.muH)(CHCHCMeCH). Organometallics, 1993, 12, 250-252	3.8	10
80	Synthesis, structure and reactivity studies of triosmium complexes, Os3(CO)10(EBr)(CH?CHPh) and Os3(CO)9(EH)(EBr)(C?CHPh). <i>Journal of Organometallic Chemistry</i> , 1989 , 377, C59-C64	2.3	10
79	Reaction of polynuclear acetylide clusters. Synthesis of pentanuclear heterometallic clusters by addition of [M(CO)3(CCPh)(EC5H5)] to [MOs3(CO)11(CCPh)(EC5H5)](M = Mo or W). Crystal structures of [Mo2Os3(CO)11(CCPhCCPh)(EC5H5)2]DH2O and		10
78	End-capped E hiophene-freelbrganic dye for dye-sensitized solar cell: Optimized donor, broadened spectra and enhanced open-circuit voltage. <i>Dyes and Pigments</i> , 2016 , 124, 45-52	4.6	9
77	Highly Efficient Dye-Sensitized Solar Cells Based on Panchromatic Ruthenium Sensitizers with Quinolinylbipyridine Anchors. <i>Angewandte Chemie</i> , 2014 , 126, 182-187	3.6	9

76	Triadic coupling between hydride, acetylide and alkyne on the complex[WRe(IIC5Me5)O(CO)4(II-H)(CCPh)]. Crystal structures of complexes containing asubstituted cyclopentadienylidene ligand or a foldedmetallacyclopentadienyl fragment. <i>Journal of</i>		9
75	Synthesis of the First Cluster Complexes Bearing Three Quadruply Bridging CO Ligands: X-ray Crystal Structure of [C5H3(SiMe3)2]WRu6(B.H)- (CO)18. <i>Journal of the American Chemical Society</i> , 1997, 119, 11114-11115	16.4	9
74	Efficient and bright blue-emitting phosphorescent materials. <i>Journal of the Society for Information Display</i> , 2005 , 13, 857-862	2.1	9
73	A Study of Unsaturated Pyrazolate-Bridged Diruthenium Carbonyl Complexes. <i>Organometallics</i> , 2002 , 21, 4735-4742	3.8	9
72	Syntheses and Reactivity Studies of the Carbido-Alkylidyne Cluster Complexes LWRu4(B-C)(ECPh)(CO)12 and LWRu5(B-C)(ECPh)(CO)14, L = Cp and Cp*, Obtained from Reversible Scission of Acetylide Ligand. <i>Organometallics</i> , 2001 , 20, 215-223	3.8	9
71	Concurrent rearrangement of phenylimido and alkenyl ligands on a WRu2 metal triangle. <i>Journal of the Chemical Society Dalton Transactions</i> , 1993 , 227		9
70	Competitive addition and substitution reactions in the interaction of CpWOs3(CO)9(EO)(B-CCH2Tol) with phosphorus donors. The crystal structure of CpWOs3(CO)8(PPh2Me)(EO)(B-CCH2Tol). <i>Journal of Organometallic Chemistry</i> , 1989 , 372, 273-285	2.3	9
69	The site selectivity of hydridge ligand in tungsten-triosmium clusters: the crystal structure and the solution dynamics of (C5Me5WOs3(CO)12H. <i>Journal of Organometallic Chemistry</i> , 1989 , 371, 197-203	2.3	9
68	Regiospecific coupling of coordinated acetylide and disubstituted alkynes. X-ray structures of CpWOs2(CO)7[C(Tol)C(Tol)CCnBu] and CpWOs2(CO)7[C(CF3)C(CF3)CCPh]. <i>Journal of Organometallic Chemistry</i> , 1990 , 384, 93-103	2.3	9
67	Power Efficiency Improvement of White Phosphorescent Organic Light-Emitting Diode with Thin Double-Emitting Layers and Hole-Trapping Mechanism. <i>Japanese Journal of Applied Physics</i> , 2011 , 50, 04DK04	1.4	9
66	Methoxy-substituted bis-tridentate iridium(III) phosphors and fabrication of blue organic light emitting diodes. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 13590-13602	7.1	9
65	A new insight into the chemistry of iridium(III) complexes bearing phenyl phenylphosphonite cyclometalate and chelating pyridyl triazolate: the excited-state proton transfer tautomerism via an inter-ligand PO-HIIIN hydrogen bond. <i>Dalton Transactions</i> , 2015 , 44, 8406-18	4.3	8
64	Formation of Excimers in Isoquinolinyl Pyrazolate Pt(II) Complexes: Role of Cooperativity Effects. <i>Inorganic Chemistry</i> , 2020 , 59, 18253-18263	5.1	8
63	Nonacarbonyl-Tri-EHydrido-B-Methylidyne-Triruthenium and -Triosmium. <i>Inorganic Syntheses</i> , 2007 , 196-208		8
62	Ligand Exchange in Tungsten R henium Acetylide Complexes (C5Me5)WRe(EX)(CCPh)(CO)5, X = Br, I, SPh, and O2CMe, and the Conversion to Complexes LWRe(ESO2Ph)(CCPh)(CO)5, L = Cp and C5Me5, Bearing a Sulfinate Bridge via Oxidation Using Hydrogen Peroxide. <i>Organometallics</i> , 1998 ,	3.8	8
61	Cluster Compounds Bearing both High- and Low-Valent Transition Metal Fragments: The Reactions of Imido Carbonyl Cluster Ru3(CO)10(B-NPh) with Dioxo Acetylide Complexes (C5Me5)W(O)2(CCR), R = Ph and CMeCH2. Organometallics, 1998 , 17, 4146-4154	3.8	8
60	Synthesis and properties of mixed-metal phosphido and phosphinidene clusters derived from reaction between Ru3(CO)10(EH)(EP.Ph2) and Cp? Mo(CO)3H. <i>Journal of Organometallic Chemistry</i> , 1994 , 481, 143-152	2.3	8
59	Conversion of the cluster core structure via CO elimination and activation of the coordinated hydrocarbon ligand. Synthesis and reactions of WOs3Cp(CO)10(CMeCMeCCPh). <i>Journal of the Chemical Society Chemical Communications</i> , 1991 , 1023		8

58	Preparation of tetranuclear heterometallic clusters by condensation of tungsten acetylides [W(CO)3(CCR)(EC5H5)] with acetylide clusters [WRu2(CO)8(CCR)L](L=EC5H5 or EC5Me5, R = Ph or C6H4F-p). Crystal structures of [W2Ru2(CO)9{CC(C6H4F-p)}(EC5H5)2] and		8	
57	[W2Ru2(CO)6(CCPh)2(BC5H5)(BC5Me5)]. Journal of the Chemical Society Dalton Transactions, 1991 Substituent effect of Ru(II)-based sensitizers bearing a terpyridine anchor and a pyridyl azolate ancillary for dye sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 18422-18431	13	7	
56	Varying numbers and positions of carboxylate groups on Ru dyes for dye-sensitized solar cells: uptake on TiO2, cell performance and cell stability. <i>RSC Advances</i> , 2014 , 4, 10165-10175	3.7	7	
55	The tunable third-order optical nonlinearities of a diarylethene-zinc phthalocyanine hybrid. <i>Dyes and Pigments</i> , 2014 , 102, 251-256	4.6	7	
54	Syntheses and Reactivity of Heterometallic OxoAcetylide Cluster Compounds. Skeletal Rearrangement and Conversion of Acetylide to Alkenyl, Alkylidene, and Allenyl Ligands on a WRe2 Framework. <i>Organometallics</i> , 1997 , 16, 2434-2442	3.8	7	
53	Synthesis, crystal structure and solution fluxionality of heterometallic hydride clusters [WRu3L(CO)11(µ-H)2-(AuPPh3)](L = C5H5 or C5Me5). <i>Journal of the Chemical Society Dalton Transactions</i> , 1993 , 1823-1828		7	
52	Stoichiometric Alkyne Metathesis at Metal Cluster Compounds: Interconversion of Os3W Alkyne-Alkylidyne and Dimetalloallyl Clusters. <i>Organometallics</i> , 1994 , 13, 2142-2144	3.8	7	
51	Tunable chromaticity stability in solution-processed organic light emitting devices. <i>Organic Electronics</i> , 2015 , 20, 36-42	3.5	6	
50	Optimizing blue iridium complex and orange-red osmium complex doping concentrations to improve phosphorescent white organic light emitting diodes. <i>Current Applied Physics</i> , 2011 , 11, S175-S1	178 ⁶	6	
49	Reversible coordination of the high oxidation state dioxo-acetylide fragment (C5Me5)W(O)2(CCPh) to a hexaruthenium cluster frame. <i>Journal of Organometallic Chemistry</i> , 1998 , 565, 3-10	2.3	6	
48	Synthesis and skeletal isomerization of the phosphinidene acetylide cluster complexes [Ru4(CO)10(µ4-PPh)(CCPh){WL(CO)}] where L = C5Me5 or C5H5. <i>Journal of the Chemical Society Dalton Transactions</i> , 1998 , 1053-1056		6	
47	Resonance Raman and density functional study of the A-band absorption of C5H5[WC?CPh]O2. <i>Chemical Physics Letters</i> , 2001 , 338, 308-316	2.5	6	
46	AlkyneBarbide coupling on WOs3 cluster framework; synthesis and X-ray structure of (C5Me5)WOs3(A-C)(ECHCHR)(CO)10 and (C5Me5)WOs3[B-CCR(CH2)](CO)10, R=CH2Ph. <i>Journal of Organometallic Chemistry</i> , 1999 , 574, 294-301	2.3	6	•
45	Reactions of the triosmium complex Os3(CO)10(Br)(CH?CHPh) with benzyl isonitrile and triphenylphosphine. Crystal structure and solut fluxionality of the ethenyl derivatives. <i>Journal of Organometallic Chemistry</i> , 1991 , 410, 85-99	2.3	6	
44	Chemistry of Heterometallic Cluster Compounds Prepared by Condensation of Group 6 Metal Acetylide and Group 8 Binary Carbonyl Complexes. <i>Journal of the Chinese Chemical Society</i> , 1992 , 39, 591-601	1.5	6	
43	Clusters containing ynamine ligands. 6. Transformations of an ynamine ligand in a dirhenium complex. Synthesis and structural characterization of Re2(CO)8[.muH2CCHCNMe2], Re2(CO)7[.muH2CCCNMe2](.muH), and Re2(CO)8[.muH2C:CCNMe2](.muH). Organometallics,	3.8	6	
42	High Performance NIR OLEDs with Low Efficiency Roll-Off by Leveraging Os(II) Phosphors and Exciplex Co-Host. <i>Advanced Functional Materials</i> , 2021 , 31, 2102787	15.6	6	
41	New Spiro-Phenylpyrazole/Dibenzosuberene Derivatives as Hole-Transporting Material for Perovskite Solar Cells. <i>Solar Rrl</i> , 2019 , 3, 1900143	7.1	5	

40	Heterobimetallic copper(I) complexes bearing both 1,1?-bis(diphenylphosphino)ferrocene and functionalized 3-(2?-pyridyl)-1,2,4-triazole. <i>New Journal of Chemistry</i> , 2019 , 43, 4261-4271	3.6	5
39	An Improved Synthesis for Novel Hexaruthenium Cluster Compound Bearing Two Quadruply-Bridging CO Ligands: Synthesis, Characterization, and X-Ray Structural Analysis of Ru6(CO)12(B-H)(ECO) (A-IP-CO)2[Ib-C5H4(SiMe3)]. <i>Journal of Cluster Science</i> , 1997 , 8, 507-519	3	5
38	New electron-deficient alkene and alkyne derivatives of Ru5(E-C)(CO)15: The syntheses and crystal structure analyses of Ru5(E-C)(CO)13 [C2H2(CO2Me)2] and Ru5(E-C)(CO)15 [C2(CO2Me)2]. <i>Journal of Cluster Science</i> , 1997 , 8, 87-100	3	5
37	Synthesis, Characterization, and Reactivity of W2Ru3 Clusters That Contain Oxo and Carbido Ligands, Obtained by Direct CD Bond Activation. <i>Organometallics</i> , 2001 , 20, 1102-1108	3.8	5
36	Synthesis and structural characterization of a novel WRu2 cluster compound possessing a terminal phenylimido ligand. <i>Journal of the Chemical Society Chemical Communications</i> , 1992 , 1705		5
35	Synthesis and crystal structure of a tetranuclear mixed-metal alkylidene complex CpWOs3(CO)9(EO)(EH)(ECHTol). <i>Polyhedron</i> , 1990 , 9, 1491-1495	2.7	5
34	Twisted carbon-carbon double bonds. Crystal and molecular structure of 4,5-di-tert-butyl-1,1,2,2-tetrafluoro-1,2-disilacyclohexa-3,5-diene. <i>Journal of the American Chemical Society</i> , 1982 , 104, 1594-1598	16.4	5
33	Homoleptic Ir(III) Phosphors with 2-Phenyl-1,2,4-triazol-3-ylidene Chelates for Efficient Blue Organic Light-Emitting Diodes. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 ,	9.5	5
32	Novel Ruthenium Sensitizers Designing for Efficient Light Harvesting under Both Sunlight and Ambient Dim Light. <i>Solar Rrl</i> , 2020 , 4, 2000046	7.1	4
31	Electroluminescence Stability of Organic Light-Emitting Devices Utilizing a Nondoped Pt-Based Emission Layer. <i>ACS Omega</i> , 2018 , 3, 4760-4765	3.9	4
30	Chemistry of heterometallic phenyl imido and phosphinidene clusters. <i>Journal of Cluster Science</i> , 1992 , 3, 333-345	3	4
29	Exploiting the Reactivity of Fluorinated 2-Arylpyridines in Pd-Catalyzed C-H Bond Arylation for the Preparation of Bright Emitting Iridium(III) Complexes. <i>Inorganic Chemistry</i> , 2020 , 59, 13898-13911	5.1	4
28	Revealing the role of 1,2,4-triazolate fragment of blue-emitting bis-tridentate Ir(III) phosphors: photophysical properties, photo-stabilities, and applications. <i>Materials Today Energy</i> , 2021 , 20, 100636	7	4
27	Constructing deep-blue bis-tridentate Ir(III) phosphors with fluorene-based dianionic chelates. Journal of Materials Chemistry C, 2021 , 9, 1318-1325	7.1	4
26	Power Efficiency Improvement of White Phosphorescent Organic Light-Emitting Diode with Thin Double-Emitting Layers and Hole-Trapping Mechanism. <i>Japanese Journal of Applied Physics</i> , 2011 , 50, 04DK04	1.4	3
25	Alkoxo-bridged Cobalt(II) Cube and Its Radical Adduct. <i>Chemistry Letters</i> , 2007 , 36, 1154-1155	1.7	3
24	Structural characterization of SrIIi and BaIIi catecholate complexes: single source precursors for SrTiO3 and BaTiO3 binary oxides. <i>Journal of Physics and Chemistry of Solids</i> , 2001 , 62, 1871-1879	3.9	3
23	Heteronuclear Clusters Containing C1, C2, C3, 🏗 Acyclic Hydrocarbyl Ligands 1995 , 85-185		3

(2005-1991)

22	Cluster assisted formation of carbon-carbon bonds: Synthesis and crystal structures of two trinuclear heterometallic complexes CpWRu2(CO)7(EH)[OC(NMe2)CCHCHEt] and CpWRu2(CO)6(EH)[OC(NMe2)CCH(ED2-C6H4)]. <i>Journal of Cluster Science</i> , 1991 , 2, 1-18	3	3
21	Iridium(III) Phosphors B earing Functional 9-Phenyl-7,9-dihydro-8H-purin-8-ylidene Chelates and Blue Hyperphosphorescent OLED Devices. <i>Advanced Photonics Research</i> ,2100381	1.9	3
20	64.3: High-Efficiency Phosphorescent White OLEDs Using Red-Emitting Osmium Complex and Blue-Emitting Iridium Complex. <i>Digest of Technical Papers SID International Symposium</i> , 2007 , 38, 1772-7	1775	2
19	Improvement on ferroelectric properties of metal-organic decomposited PZT thin film prepared by using prenucleation layer. <i>Integrated Ferroelectrics</i> , 2000 , 30, 157-164	0.8	2
18	Aurated tungsten-triosmium cluster compounds. Synthesis and characterization of LWOs3(CO)12(AuPPh3) and related hydrogenation products LWOs3(CO)11(EH)2(AuPPh3), L = C5 H5 and C5 Me5. <i>Journal of Cluster Science</i> , 1996 , 7, 85-102	3	2
17	Synthesis of Thiolato Heterometalllc Clusters from the Reaction of Os3(CO)9(NCMe)(EH)(ESMe) with CpW(CO)3H. <i>Journal of the Chinese Chemical Society</i> , 1994 , 41, 621-625	1.5	2
16	Interlayer Charge Transfer Coupled with Acoustic Phonon in Organic/Inorganic van der Waals Stacked Heterostructures: Self-Assembled Pt(II) Complex on a PtSe2 Monolayer. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 25538-25546	3.8	2
15	Luminescence of Pyrazinyl Pyrazolate Pt(II) Complexes Fine-Tuned by the Solid-State Stacking Interaction. <i>Energy & Description</i> Enteraction. <i>Energy & Description</i> Enteraction.	4.1	2
14	Organic Light-Emitting Diodes: Os(II) Based Green to Red Phosphors: A Great Prospect for Solution-Processed, Highly Efficient Organic Light-Emitting Diodes (Adv. Funct. Mater. 16/2012). <i>Advanced Functional Materials</i> , 2012 , 22, 3318-3318	15.6	1
13	P-212: Architecture Design for Efficient True-Blue Phosphorescent OLEDs. <i>Digest of Technical Papers SID International Symposium</i> , 2008 , 39, 2005	0.5	1
12	Efficient Pyrazolo[5,4-f]quinoxaline Functionalized Os(II) Based Emitter with an Electroluminescence Peak Maximum at 811 nm. <i>Chemistry - A European Journal</i> , 2021 , 28, e202103202	4.8	1
11	Stepwise Access of Emissive Ir(III) Complexes Bearing a Multi-Dentate Heteroaromatic Chelate: Fundamentals and Applications <i>Inorganic Chemistry</i> , 2022 , 61, 4384-4393	5.1	1
10	The Observation of Interchain Motion in Self-Assembled Crystalline Platinum(II) Complexes: An Exquisite Case but By No Means the Only One in Molecular Solids. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 7482-7489	6.4	О
9	Azolate-based osmium(II) complexes with luminescence spanning visible and hear infrared region. <i>European Journal of Inorganic Chemistry</i> ,	2.3	О
8	Solar Cells: PtCoFe Nanowire Cathodes Boost Short-Circuit Currents of Ru(II)-Based Dye-Sensitized Solar Cells to a Power Conversion Efficiency of 12.29% (Adv. Funct. Mater. 3/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870020	15.6	
7	Light Emitting Materials for Organic Electronics. <i>Journal of Photopolymer Science and Technology =</i> [Fotoporima Konwakai Shi], 2008 , 21, 357-362	0.7	
6	Pyridyl Azolate Based Luminescent Complexes: Strategic Design, Photophysics, and Applications185-22	20	
5	61.3: Blue Dopants and New Host Materials for Phosphorescent Organic Light-Emitting Diodes. Digest of Technical Papers SID International Symposium, 2005 , 36, 1756	0.5	

4	Near-Infrared Thermally Activated Delayed Fluorescence Nanoparticle: A Metal-Free Photosensitizer for Two-Photon-Activated Photodynamic Therapy at the Cell and Small Animal Levels (Small 6/2022). <i>Small</i> , 2022 , 18, 2270025	11
3	Unusual Ligand Transformations and Rearrangements in Heterometallic Clusters 1995 , 113-124	
2	21-2: Invited Paper: Platinum(II) Based Near-Infrared Phosphors for Efficient Organic Light-Emitting Diodes with Peak Wavelength Beyond 800 nm. <i>Digest of Technical Papers SID International Symposium</i> , 2021 , 52, 254-256	0.5
1	38.3: Invited Paper: Platinum(II) Based Phosphors and NIR Organic Light Emitting Diodes. <i>Digest of Technical Papers SID International Symposium</i> , 2021 , 52, 486-486	0.5